1,981 research outputs found

    Reductions for the Stable Set Problem

    Get PDF
    One approach to finding a maximum stable set (MSS) in a graph is to try to reduce the size of the problem by transforming the problem into an equivalent problem on a smaller graph. This paper introduces several new reductions for the MSS problem, extends several well-known reductions to the maximum weight stable set (MWSS) problem, demonstrates how reductions for the generalized stable set problem can be used in conjunction with probing to produce powerful new reductions for both the MSS and MWSS problems, and shows how hypergraphs can be used to expand the capabilities of clique projections. The effectiveness of these new reduction techniques are illustrated on the DIMACS benchmark graphs, planar graphs, and a set of challenging MSS problems arising from Steiner Triple Systems

    Factors influencing prognosis in adults with acute myelogenous leukaemia.

    Get PDF
    A study of the thymidine labelling index (TLI) of bone marrow blast cells in 58 untreated patients with acute myelogenous leukemia showed no correlation with remission rate but there was a strong correlation between labelling index and remission length in the 21 patients who achieved remission. The median remission length of the patients was 33 weeks. Of the 12 patients with initial labelling indices greater than 10%, only 2 had remissions longer than 33 weeks whereas 8 of the 9 patients with labelling indices less than 10% had remissions longer than 33 weeks. No correlation could be found between the degree of cytological differentiation and remission induction, remission length or survival. No correlation was found between the TLI and the degree of cytological differentiation. Age and initial platelet count were confirmed to be important factors influencing complete remission rate, but these factors did not correlate with remission length. Sixteen patients had their pretreatment sera assayed for mouse marrow colony stimulating activity and inhibitor levels but there was no correlation with subsequent response to treatment, although the number of patients examined was clearly too small for any definite conclusions to be drawn

    Off-Diagonal Long-Range Order in Bose Liquids: Irrotational Flow and Quantization of Circulation

    Full text link
    On the basis of gauge invariance, it is proven in an elementary and straightforward manner, but without invoking any {\it ad hoc} assumption, that the existence of off-diagonal long-range order in one-particle reduced density matrix in Bose liquids implies both the irrotational flow in a simply connected region and the quantization of circulation in a multiply connected region, the two fundamental properties of a Bose superfluid. The origin for both is the phase coherence of condensate wave-functions. Some relevant issues are also addressed.Comment: Revtex, 4 pages, no figure

    Girls’ and women’s education within Unesco and the World Bank, 1945–2000

    Get PDF
    By 2000, girls’ and women’s education was a priority for international development organisations. While studies have examined the impact of recent campaigns and programmes, there has been less exploration of ideas about girls’ and women’s education within development thought in the immediate post?colonial period, and the political mechanisms through which this came to be a global concern. Through a study of policy documents, this paper investigates how the education of girls and women came to be prioritised within the two principle UN agencies involved with education since 1945, the World Bank and Unesco. A shift in priorities is evident, from ensuring formal rights and improving the status of women, to expanding the productive capacities of women, fertility control and poverty reduction. While the ascendance of human capital theory provided a space for a new perception of the role of women’s education in development, in other policy arenas women’s education was central to exploring more substantive, rights?based notions of gender equality. Ultimately, the goal of improving girls’ and women’s education fitted into diverse development agendas, paving the way for it to become a global development priority

    Analytic Evaluation of the Decay Rate for Accelerated Proton

    Get PDF
    We evaluate the decay rate of the uniformly accelerated proton. We obtain an analytic expression for inverse beta decay process caused by the acceleration. We evaluate the decay rate both from the inertial frame and from the accelerated frame where we should consider thermal radiation by Unruh effect. We explicitly check that the decay rates obtained in both frame coincide with each other.Comment: 11 page

    Knots and Particles

    Get PDF
    Using methods of high performance computing, we have found indications that knotlike structures appear as stable finite energy solitons in a realistic 3+1 dimensional model. We have explicitly simulated the unknot and trefoil configurations, and our results suggest that all torus knots appear as solitons. Our observations open new theoretical possibilities in scenarios where stringlike structures appear, including physics of fundamental interactions and early universe cosmology. In nematic liquid crystals and 3He superfluids such knotted solitons might actually be observed.Comment: 9 pages, 4 color eps figures and one b/w because of size limit (color version available from authors

    Black Hole Thermodynamics and Lorentz Symmetry

    Full text link
    Recent developments point to a breakdown in the generalized second law of thermodynamics for theories with Lorentz symmetry violation. It appears possible to construct a perpetual motion machine of the second kind in such theories, using a black hole to catalyze the conversion of heat to work. Here we describe and extend the arguments leading to that conclusion. We suggest the inference that local Lorentz symmetry may be an emergent property of the macroscopic world with origins in a microscopic second law of causal horizon thermodynamics.Comment: 4 pages; v2: Version to appear in Foundations of Physics. Potential counterexamples addressed, argument given applying to LV theories where all speeds (or horizons) coincide, and editing for clarit

    Atom chip for BEC interferometry

    Get PDF
    We have fabricated and tested an atom chip that operates as a matter wave interferometer. In this communication we describe the fabrication of the chip by ion-beam milling of gold evaporated onto a silicon substrate. We present data on the quality of the wires, on the current density that can be reached in the wires and on the smoothness of the magnetic traps that are formed. We demonstrate the operation of the interferometer, showing that we can coherently split and recombine a Bose–Einstein condensate with good phase stability

    Diamonds's Temperature: Unruh effect for bounded trajectories and thermal time hypothesis

    Full text link
    We study the Unruh effect for an observer with a finite lifetime, using the thermal time hypothesis. The thermal time hypothesis maintains that: (i) time is the physical quantity determined by the flow defined by a state over an observable algebra, and (ii) when this flow is proportional to a geometric flow in spacetime, temperature is the ratio between flow parameter and proper time. An eternal accelerated Unruh observer has access to the local algebra associated to a Rindler wedge. The flow defined by the Minkowski vacuum of a field theory over this algebra is proportional to a flow in spacetime and the associated temperature is the Unruh temperature. An observer with a finite lifetime has access to the local observable algebra associated to a finite spacetime region called a "diamond". The flow defined by the Minkowski vacuum of a (four dimensional, conformally invariant) quantum field theory over this algebra is also proportional to a flow in spacetime. The associated temperature generalizes the Unruh temperature to finite lifetime observers. Furthermore, this temperature does not vanish even in the limit in which the acceleration is zero. The temperature associated to an inertial observer with lifetime T, which we denote as "diamond's temperature", is 2hbar/(pi k_b T).This temperature is related to the fact that a finite lifetime observer does not have access to all the degrees of freedom of the quantum field theory.Comment: One reference correcte

    Experiments on a videotape atom chip: fragmentation and transport studies

    Get PDF
    This paper reports on experiments with ultra-cold rubidium atoms confined in microscopic magnetic traps created using a piece of periodically-magnetized videotape mounted on an atom chip. The roughness of the confining potential is studied with atomic clouds at temperatures of a few microKelvin and at distances between 30 and 80 microns from the videotape-chip surface. The inhomogeneities in the magnetic field created by the magnetized videotape close to the central region of the chip are characterized in this way. In addition, we demonstrate a novel transport mechanism whereby we convey cold atoms confined in arrays of videotape magnetic micro-traps over distances as large as ~ 1 cm parallel to the chip surface. This conveying mechanism enables us to survey the surface of the chip and observe potential-roughness effects across different regions.Comment: 29 pages, 22 figures
    • …
    corecore