324 research outputs found

    Transgenic potato plants expressing oxalate oxidase have increased resistance to oomycete and bacterial pathogens

    Get PDF
    Summary: Potato (cv. Bintje) was transformed with a gene encoding an oxalate oxidase from wheat under the control of the CaMV35S promoter. Transgenic potato plants produced high constitutive levels of H2O2 as visualized by 4-chloro-l-naphtol staining. The resistance of these plants was tested againstPhytophthora infestans. An increased level of resistance to the disease was marked by a reduced number of lesions as well as by a decreased number of sporangia formed per lesion. In addition, oxalate oxidase overexpressing plants also exhibited improved resistance toStreptomyces reticuliscabiei, the causal agent of netted scab. Increased expression of oxalate oxidase had no effect on the interaction withErwinia carotovora. These experiments show that overexpression of oxalate oxidase represents a potentially interesting approach for protection of potato to pathogen

    Do Soluble Phosphates Direct the Formose Reaction towards Pentose Sugars?

    Get PDF
    The formose reaction has been a leading hypothesis for the prebiotic synthesis of sugars such as ribose for many decades but tends to produce complex mixtures of sugars and often tars. Channeling the formose reaction towards the synthesis of biologically useful sugars such as ribose has been a holy grail of origins-of-life research. Here, we tested the hypothesis that a simple, prebiotically plausible phosphorylating agent, acetyl phosphate, could direct the formose reaction towards ribose through phosphorylation of intermediates in a manner resembling gluconeogenesis and the pentose phosphate pathway. We did indeed find that addition of acetyl phosphate to a developing formose reaction stabilized pentoses, including ribose, such that after 5 h of reaction about 10-fold more ribose remained compared with control runs. But mechanistic analyses using liquid chromatography-mass spectrometry showed that, far from being directed towards ribose by phosphorylation, the formose reaction was halted by the precipitation of Ca2+ ions as phosphate minerals such as apatite and hydroxyapatite. Adding orthophosphate had the same effect. Phosphorylated sugars were only detected below the limit of quantification when adding acetyl phosphate. Nonetheless, our findings are not strictly negative. The sensitivity of the formose reaction to geochemically reasonable conditions, combined with the apparent stability of ribose under these conditions, serves as a valuable constraint on possible pathways of sugar synthesis at the origin of life

    2772 Magnetospheric Physics: Plasma waves and instabilities; 6984 Radio Science: Waves in plasma

    Get PDF
    [1] Waves with frequencies in the vicinity of the proton cyclotron frequency and its harmonics are commonly observed from the Fast Auroral Snapshot spacecraft when traversing regions of auroral particle acceleration. In areas of upward current, largeamplitude electromagnetic waves with frequencies within 5% of the local proton gyrofrequency p and its harmonics are often observed where upstreaming ion beams exist. These waves have electric field (E 1 ) and magnetic field (B 1 ) amplitudes of up to 1 V m À1 and 2 nT with the ratio E 1 /B 1 as small as c. The waves occur in the low-altitude portion of the primary auroral acceleration potential, where plasma densities are 1 cm À3 . It is shown how these waves grow through inverse Landau resonance with a cold field-aligned electron beam superimposed on an accelerated and magnetically mirrored plasma sheet electron component in the absence of any significant plasma densities at energies below $100 eV. Significantly, the drift velocity of the cold beam (v oeb ) is several times larger than its thermal velocity v eb , and it is this feature that allows the wave to become electromagnetic at cyclotron harmonics while simultaneously giving rise to broadband electrostatic emissions spanning the first few cyclotron harmonics as is observed

    Defining the cognitive phenotype of autism

    Get PDF
    Although much progress has been made in determining the cognitive profile of strengths and weaknesses that characterise individuals with autism spectrum disorders (ASDs), there remain a number of outstanding questions. These include how universal strengths and deficits are; whether cognitive subgroups exist; and how cognition is associated with core autistic behaviours, as well as associated psychopathology. Several methodological factors have contributed to these limitations in our knowledge, including: small sample sizes, a focus on single domains of cognition, and an absence of comprehensive behavioural phenotypic information. To attempt to overcome some of these limitations, we assessed a wide range of cognitive domains in a large sample (N = 100) of 14- to 16-year-old adolescents with ASDs who had been rigorously behaviourally characterised. In this review, we will use examples of some initial findings in the domains of perceptual processing, emotion processing and memory, both to outline different approaches we have taken to data analysis and to highlight the considerable challenges to better defining the cognitive phenotype(s) of ASDs. Enhanced knowledge of the cognitive phenotype may contribute to our understanding of the complex links between genes, brain and behaviour, as well as inform approaches to remediation

    Structural Integration in Language and Music: Evidence for a Shared System.

    Get PDF
    In this study, we investigate whether language and music share cognitive resources for structural processing. We report an experiment that used sung materials and manipulated linguistic complexity (subject-extracted relative clauses, object-extracted relative clauses) and musical complexity (in-key critical note, out-of-key critical note, auditory anomaly on the critical note involving a loudness increase). The auditory-anomaly manipulation was included in order to test whether the difference between in-key and out-of-key conditions might be due to any salient, unexpected acoustic event. The critical dependent measure involved comprehension accuracies to questions about the propositional content of the sentences asked at the end of each trial. The results revealed an interaction between linguistic and musical complexity such that the difference between the subject- and object-extracted relative clause conditions was larger in the out-of-key condition than in the in-key and auditory-anomaly conditions. These results provide evidence for an overlap in structural processing between language and music

    Restricted Attentional Capacity within but Not between Sensory Modalities: An Individual Differences Approach

    Get PDF
    Background Most people show a remarkable deficit to report the second of two targets when presented in close temporal succession, reflecting an attentional blink (AB). An aspect of the AB that is often ignored is that there are large individual differences in the magnitude of the effect. Here we exploit these individual differences to address a long-standing question: does attention to a visual target come at a cost for attention to an auditory target (and vice versa)? More specifically, the goal of the current study was to investigate a) whether individuals with a large within-modality AB also show a large cross-modal AB, and b) whether individual differences in AB magnitude within different modalities correlate or are completely separate. Methodology/Principal Findings While minimizing differential task difficulty and chances for a task-switch to occur, a significant AB was observed when targets were both presented within the auditory or visual modality, and a positive correlation was found between individual within-modality AB magnitudes. However, neither a cross-modal AB nor a correlation between cross-modal and within-modality AB magnitudes was found. Conclusion/Significance The results provide strong evidence that a major source of attentional restriction must lie in modality-specific sensory systems rather than a central amodal system, effectively settling a long-standing debate. Individuals with a large within-modality AB may be especially committed or focused in their processing of the first target, and to some extent that tendency to focus could cross modalities, reflected in the within-modality correlation. However, what they are focusing (resource allocation, blocking of processing) is strictly within-modality as it only affects the second target on within-modality trials. The findings show that individual differences in AB magnitude can provide important information about the modular structure of human cognition

    An extended multisensory temporal binding window in autism spectrum disorders

    Get PDF
    Autism spectrum disorders (ASD) form a continuum of neurodevelopmental disorders, characterized by deficits in communication and reciprocal social interaction, as well as by repetitive behaviors and restricted interests. Sensory disturbances are also frequently reported in clinical and autobiographical accounts. However, surprisingly few empirical studies have characterized the fundamental features of sensory and multisensory processing in ASD. The current study is structured to test for potential differences in multisensory temporal function in ASD by making use of a temporally dependent, low-level multisensory illusion. In this illusion, the presentation of a single flash of light accompanied by multiple sounds often results in the illusory perception of multiple flashes. By systematically varying the temporal structure of the audiovisual stimuli, a “temporal window” within which these stimuli are likely to be bound into a single perceptual entity can be defined. The results of this study revealed that children with ASD report the flash-beep illusion over an extended range of stimulus onset asynchronies relative to children with typical development, suggesting that children with ASD have altered multisensory temporal function. These findings provide valuable new insights into our understanding of sensory processing in ASD and may hold promise for the development of more sensitive diagnostic measures and improved remediation strategies

    Localization of Secondary Metabolites in Marine Invertebrates: Contribution of MALDI MSI for the Study of Saponins in Cuvierian Tubules of H. forskali

    Get PDF
    BACKGROUND: Several species of sea cucumbers of the family Holothuriidae possess a particular mechanical defense system called the Cuvierian tubules (Ct). It is also a chemical defense system as triterpene glycosides (saponins) appear to be particularly concentrated in Ct. In the present study, the precise localization of saponins in the Ct of Holothuria forskali is investigated. Classical histochemical labeling using lectin was firstly performed but did not generate any conclusive results. Thus, MALDI mass spectrometry Imaging (MALDI-MSI) was directly applied and completed by statistical multivariate tests. A comparison between the tubules of relaxed and stressed animals was realized. RESULTS: These analyses allowed the detection of three groups of ions, corresponding to the isomeric saponins of the tubules. Saponins detected at m/z 1287 and 1303 were the most abundant and were apparently localized in the connective tissue of the tubules of both relaxed and stressed individuals. Saponins at m/z 1125 and 1141 were detected in lower amount and were present in tissues of relaxed animals. Finally, saponin ions at 1433, 1449, 1463 and 1479 were observed in some Ct of stressed holothuroids in the outer part of the connective tissue. The saponin group m/z 14xx seems therefore to be stress-specific and could originate from modifications of the saponins with m/z of 11xx. CONCLUSIONS: All the results taken together indicate a complex chemical defense mechanism with, for a single organ, different sets of saponins originating from different cell populations and presenting different responses to stress. The present study also reflects that MALDI-MSI is a valuable tool for chemical ecology studies in which specific chemical signalling molecules like allelochemicals or pheromones have to be tracked. This report represents one of the very first studies using these tools to provide a functional and ecological understanding of the role of natural products from marine invertebrates
    corecore