3,664 research outputs found
Heat conduction and Wiedemann-Franz Law in disordered Luttinger Liquids
We consider heat transport in a Luttinger liquid (LL) with weak disorder and
study the Lorenz number for this system. We start at a high- regime, and
calculate both the electrical and thermal conductivities using a memory
function approach. The resulting Lorenz number is independent of but
depends explicitly on the LL exponents. Lowering , however, allows for a
renormalization of the LL exponents from their bare values by disorder, causing
a violation of the Wiedemann-Franz law. Finally, we extend the discussion to
quantum wire systems and study the wire size dependence of the Lorenz number.Comment: 4 pages, 1 eps figure; Changes made to address Referees' comment
Emissions of Volatile Organic Compounds Inferred From Airborne Flux Measurements over a Megacity
Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC) fluxes of Volatile Organic Compounds (VOC) using Proton Transfer Reaction Mass Spectrometry (PTR-MS) on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC) flux measurements using PTR-MS are feasible. City-median midday toluene and benzene fluxes are calculated to be on the order of 14.1&plusmn;4.0 mg/m<sup>2</sup>/h and 4.7&plusmn;2.3 mg/m<sup>2</sup>/h, respectively. For comparison the adjusted CAM2004 emission inventory estimates toluene fluxes of 10 mg/m<sup>2</sup>/h along the footprint of the flight-track. Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10–15 g/g) including the International airport (e.g. 3–5 g/g) and a mean flux (concentration) ratio of 3.2&plusmn;0.5 g/g (3.9&plusmn;0.3 g/g) across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (BTEX– Benzene/Toluene/Ethylbenzene/m, p, o-Xylenes) compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE) and the biomass burning marker acetonitrile (CH<sub>3</sub>CN), we show that a combination of industrial, evaporative fuel, and exhaust emissions account for >87% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds in the MCMA (2–13%)
Constructive factorization of LPDO in two variables
We study conditions under which a partial differential operator of arbitrary
order in two variables or ordinary linear differential operator admits a
factorization with a first-order factor on the left. The factorization process
consists of solving, recursively, systems of linear equations, subject to
certain differential compatibility conditions. In the generic case of partial
differential operators one does not have to solve a differential equation. In
special degenerate cases, such as ordinary differential, the problem is finally
reduced to the solution of some Riccati equation(s). The conditions of
factorization are given explicitly for second- and, and an outline is given for
the higher-order case.Comment: 16 pages, to be published in Journal "Theor. Math. Phys." (2005
Disorder Effects in Fluctuating One-Dimensional Interacting Systems
The zero temperature localization of interacting electrons coupled to a
two-dimensional quenched random potential, and constrained to move on a
fluctuating one-dimensional string embedded in the disordered plane, is studied
using a perturbative renormalization group approach. In the reference frame of
the electrons the impurities are dynamical and their localizing effect is
expected to decrease. We consider several models for the string dynamics and
find that while the extent of the delocalized regime indeed grows with the
degree of string fluctuations, the critical interaction strength, which
determines the localization-delocalization transition for infinitesimal
disorder,does not change unless the fluctuations are softer than those of a
simple elastic string.Comment: 15 page
Quantum Hall Ferromagnets: Induced Topological term and electromagnetic interactions
The quantum Hall ground state in materials like GaAs is well known
to be ferromagnetic in nature. The exchange part of the Coulomb interaction
provides the necessary attractive force to align the electron spins
spontaneously. The gapless Goldstone modes are the angular deviations of the
magnetisation vector from its fixed ground state orientation. Furthermore, the
system is known to support electrically charged spin skyrmion configurations.
It has been claimed in the literature that these skyrmions are fermionic owing
to an induced topological Hopf term in the effective action governing the
Goldstone modes. However, objections have been raised against the method by
which this term has been obtained from the microscopics of the system. In this
article, we use the technique of the derivative expansion to derive, in an
unambiguous manner, the effective action of the angular degrees of freedom,
including the Hopf term. Furthermore, we have coupled perturbative
electromagnetic fields to the microscopic fermionic system in order to study
their effect on the spin excitations. We have obtained an elegant expression
for the electromagnetic coupling of the angular variables describing these spin
excitations.Comment: 23 pages, Plain TeX, no figure
A new Proposal for a Quasielectron Trial Wavefunction for the FQHE on a Disk
In this letter, we propose a new quasielectron trial wavefunction for
interacting electrons in two dimensions moving in a strong magnetic field in a
disk geometry. Requiring that the trial wavefunction exhibits the correct
filling factor of a quasielectron wavefunction, we obtain angular
momentum eigenfunctions. The expectation values of the energy are calculated
and compared with the data of an exact numerical diagonalization.Comment: 8 page
Nuclear Spin Relaxation for Higher Spin
We study the relaxation of a spin I that is weakly coupled to a quantum
mechanical environment. Starting from the microscopic description, we derive a
system of coupled relaxation equations within the adiabatic approximation.
These are valid for arbitrary I and also for a general stationary
non--equilibrium state of the environment. In the case of equilibrium, the
stationary solution of the equations becomes the correct Boltzmannian
equilibrium distribution for given spin I. The relaxation towards the
stationary solution is characterized by a set of relaxation times, the longest
of which can be shorter, by a factor of up to 2I, than the relaxation time in
the corresponding Bloch equations calculated in the standard perturbative way.Comment: 4 pages, Latex, 2 figure
The Heisenberg antiferromagnet on a triangular lattice: topological excitations
We study the topological defects in the classical Heisenberg antiferromagnet
in two dimensions on a triangular lattice (HAFT). While the topological
analysis of the order parameter space indicates that the defects are of
type, consideration of the energy leads us to a description of the low--energy
stationary points of the action in terms of vortices, as in the planar XY
model. Starting with the continuum description of the HAFT, we show
analytically that its partition function can be reduced to that of a
2--dimensional Coulomb gas with logarithmic interaction. Thus, at low
temperatures, the correlation length is determined by the spinwaves, while at
higher temperatures we expect a crossover to a Kosterlitz--Thouless type
behaviour. The results of recent Monte Carlo calculations of the correlation
length are consistent with such a crossover.Comment: 9 pages, revtex, preprint: ITP-UH 03/9
Upper tropospheric ozone production from lightning NO_x-impacted convection: Smoke ingestion case study from the DC3 campaign
As part of the Deep Convective Cloud and Chemistry (DC3) experiment, the National Science Foundation/National Center for Atmospheric Research (NCAR) Gulfstream-V (GV) and NASA DC-8 research aircraft probed the chemical composition of the inflow and outflow of two convective storms (north storm, NS, south storm, SS) originating in the Colorado region on 22 June 2012, a time when the High Park wildfire was active in the area. A wide range of trace species were measured on board both aircraft including biomass burning (BB) tracers hydrogen cyanide (HCN) and acetonitrile (ACN). Acrolein, a much shorter lived tracer for BB, was also quantified on the GV. The data demonstrated that the NS had ingested fresh smoke from the High Park fire and as a consequence had a higher VOC OH reactivity than the SS. The SS lofted aged fire tracers along with other boundary layer ozone precursors and was more impacted by lightning NO_x (LNO_x) than the NS. The NCAR master mechanism box model was initialized with measurements made in the outflow of the two storms. The NS and SS were predicted to produce 11 and 14 ppbv of O_3, respectively, downwind of the storm over 2 days. Sensitivity tests revealed that the ozone production potential of the SS was highly dependent on LNO_x. Normalized excess mixing ratios, ΔX/ΔCO, for HCN and ACN were determined in both the fire plume and the storm outflow and found to be 7.0 ± 0.5 and 2.3 ± 0.5 pptv ppbv^(−1), respectively, and 1.4 ± 0.3 pptv ppbv^(−1) for acrolein in the outflow only
Hopf Term for a Two-Dimensional Electron Gas
In this Comment on the paper by W. Apel and Yu. A. Bychkov, cond-mat/9610040
and Phys. Rev. Lett. 78, 2188 (1997), we draw attention to our prior
microscopic derivations of the Hopf term for various systems and to
shortcomings of the Apel-Bychkov derivation. We explain how the value of the
Hopt term prefactor is expressed in terms of a topological invariant
in the momentum space and the quantized Hall conductivity of the system. (See
also related paper cond-mat/9703195)Comment: RevTeX, 1 page, no figure
- …