82 research outputs found
Short Intense Laser Pulse Collapse in Near-Critical Plasma
It is observed that the interaction of an intense ultra-short laser pulse
with an overdense gas jet results in the pulse collapse and the deposition of a
significant part of energy in a small and well localized volume in the rising
part of the gas jet, where the electrons are efficiently accelerated and
heated. A collisionless plasma expansion over 150 microns at a sub-relativistic
velocity (~c/3) has been optically monitored in time and space, and attributed
to the quasistatic field ionization of the gas associated to the hot electron
current. Numerical simulations in good agreement with the observations suggest
the acceleration in the collapse region of relativistic electrons, along with
the excitation of a sizeable magnetic dipole that sustains the electron current
over several picoseconds. Perspectives of ion beam generation at high
repetition rate directly from gas jets are discussed
Four-loop verification of algorithm for Feynman diagrams summation in N=1 supersymmetric electrodynamics
A method of Feynman diagrams summation, based on using Schwinger-Dyson
equations and Ward identities, is verified by calculating some four-loop
diagrams in N=1 supersymmetric electrodynamics, regularized by higher
derivatives. In particular, for the considered diagrams correctness of an
additional identity for Green functions, which is not reduced to the gauge Ward
identity, is proved.Comment: 14 pages, 9 figure
Wall-Crossing in Coupled 2d-4d Systems
We introduce a new wall-crossing formula which combines and generalizes the
Cecotti-Vafa and Kontsevich-Soibelman formulas for supersymmetric 2d and 4d
systems respectively. This 2d-4d wall-crossing formula governs the
wall-crossing of BPS states in an N=2 supersymmetric 4d gauge theory coupled to
a supersymmetric surface defect. When the theory and defect are compactified on
a circle, we get a 3d theory with a supersymmetric line operator, corresponding
to a hyperholomorphic connection on a vector bundle over a hyperkahler space.
The 2d-4d wall-crossing formula can be interpreted as a smoothness condition
for this hyperholomorphic connection. We explain how the 2d-4d BPS spectrum can
be determined for 4d theories of class S, that is, for those theories obtained
by compactifying the six-dimensional (0,2) theory with a partial topological
twist on a punctured Riemann surface C. For such theories there are canonical
surface defects. We illustrate with several examples in the case of A_1
theories of class S. Finally, we indicate how our results can be used to
produce solutions to the A_1 Hitchin equations on the Riemann surface C.Comment: 170 pages, 45 figure
Supergoop Dynamics
We initiate a systematic study of the dynamics of multi-particle systems with
supersymmetric Van der Waals and electron-monopole type interactions. The
static interaction allows a complex continuum of ground state configurations,
while the Lorentz interaction tends to counteract this configurational fluidity
by magnetic trapping, thus producing an exotic low temperature phase of matter
aptly named supergoop. Such systems arise naturally in gauge
theories as monopole-dyon mixtures, and in string theory as collections of
particles or black holes obtained by wrapping D-branes on internal space
cycles. After discussing the general system and its relation to quiver quantum
mechanics, we focus on the case of three particles. We give an exhaustive
enumeration of the classical and quantum ground states of a probe in an
arbitrary background with two fixed centers. We uncover a hidden conserved
charge and show that the dynamics of the probe is classically integrable. In
contrast, the dynamics of one heavy and two light particles moving on a line
shows a nontrivial transition to chaos, which we exhibit by studying the
Poincar\'e sections. Finally we explore the complex dynamics of a probe
particle in a background with a large number of centers, observing hints of
ergodicity breaking. We conclude by discussing possible implications in a
holographic context.Comment: 35 pages,11 figures. v2: updated references to include a previous
proof of classical integrability, exchanged a figure for a prettier versio
BPS Spectrum, Indices and Wall Crossing in N=4 Supersymmetric Yang-Mills Theories
BPS states in N=4 supersymmetric SU(N) gauge theories in four dimensions can
be represented as planar string networks with ends lying on D3-branes. We
introduce several protected indices which capture information on the spectrum
and various quantum numbers of these states, give their wall crossing formula
and describe how using the wall crossing formula we can compute all the indices
at all points in the moduli space.Comment: LaTeX file, 33 pages, 15 figure
Quantizing N=2 Multicenter Solutions
N=2 supergravity in four dimensions, or equivalently N=1 supergravity in five
dimensions, has an interesting set of BPS solutions that each correspond to a
number of charged centers. This set contains black holes, black rings and their
bound states, as well as many smooth solutions. Moduli spaces of such solutions
carry a natural symplectic form which we determine, and which allows us to
study their quantization. By counting the resulting wavefunctions we come to an
independent derivation of some of the wall-crossing formulae. Knowledge of the
explicit form of these wavefunctions allows us to find quantum resolutions to
some apparent classical paradoxes such as solutions with barely bound centers
and those with an infinitely deep throat. We show that quantum effects seem to
cap off the throat at a finite depth and we give an estimate for the
corresponding mass gap in the dual CFT. This is an interesting example of a
system where quantum effects cannot be neglected at macroscopic scales even
though the curvature is everywhere small.Comment: 49 pages + appendice
- âŠ