82 research outputs found

    Short Intense Laser Pulse Collapse in Near-Critical Plasma

    Full text link
    It is observed that the interaction of an intense ultra-short laser pulse with an overdense gas jet results in the pulse collapse and the deposition of a significant part of energy in a small and well localized volume in the rising part of the gas jet, where the electrons are efficiently accelerated and heated. A collisionless plasma expansion over 150 microns at a sub-relativistic velocity (~c/3) has been optically monitored in time and space, and attributed to the quasistatic field ionization of the gas associated to the hot electron current. Numerical simulations in good agreement with the observations suggest the acceleration in the collapse region of relativistic electrons, along with the excitation of a sizeable magnetic dipole that sustains the electron current over several picoseconds. Perspectives of ion beam generation at high repetition rate directly from gas jets are discussed

    Four-loop verification of algorithm for Feynman diagrams summation in N=1 supersymmetric electrodynamics

    Full text link
    A method of Feynman diagrams summation, based on using Schwinger-Dyson equations and Ward identities, is verified by calculating some four-loop diagrams in N=1 supersymmetric electrodynamics, regularized by higher derivatives. In particular, for the considered diagrams correctness of an additional identity for Green functions, which is not reduced to the gauge Ward identity, is proved.Comment: 14 pages, 9 figure

    Wall-Crossing in Coupled 2d-4d Systems

    Full text link
    We introduce a new wall-crossing formula which combines and generalizes the Cecotti-Vafa and Kontsevich-Soibelman formulas for supersymmetric 2d and 4d systems respectively. This 2d-4d wall-crossing formula governs the wall-crossing of BPS states in an N=2 supersymmetric 4d gauge theory coupled to a supersymmetric surface defect. When the theory and defect are compactified on a circle, we get a 3d theory with a supersymmetric line operator, corresponding to a hyperholomorphic connection on a vector bundle over a hyperkahler space. The 2d-4d wall-crossing formula can be interpreted as a smoothness condition for this hyperholomorphic connection. We explain how the 2d-4d BPS spectrum can be determined for 4d theories of class S, that is, for those theories obtained by compactifying the six-dimensional (0,2) theory with a partial topological twist on a punctured Riemann surface C. For such theories there are canonical surface defects. We illustrate with several examples in the case of A_1 theories of class S. Finally, we indicate how our results can be used to produce solutions to the A_1 Hitchin equations on the Riemann surface C.Comment: 170 pages, 45 figure

    Supergoop Dynamics

    Full text link
    We initiate a systematic study of the dynamics of multi-particle systems with supersymmetric Van der Waals and electron-monopole type interactions. The static interaction allows a complex continuum of ground state configurations, while the Lorentz interaction tends to counteract this configurational fluidity by magnetic trapping, thus producing an exotic low temperature phase of matter aptly named supergoop. Such systems arise naturally in N=2\mathcal{N}=2 gauge theories as monopole-dyon mixtures, and in string theory as collections of particles or black holes obtained by wrapping D-branes on internal space cycles. After discussing the general system and its relation to quiver quantum mechanics, we focus on the case of three particles. We give an exhaustive enumeration of the classical and quantum ground states of a probe in an arbitrary background with two fixed centers. We uncover a hidden conserved charge and show that the dynamics of the probe is classically integrable. In contrast, the dynamics of one heavy and two light particles moving on a line shows a nontrivial transition to chaos, which we exhibit by studying the Poincar\'e sections. Finally we explore the complex dynamics of a probe particle in a background with a large number of centers, observing hints of ergodicity breaking. We conclude by discussing possible implications in a holographic context.Comment: 35 pages,11 figures. v2: updated references to include a previous proof of classical integrability, exchanged a figure for a prettier versio

    BPS Spectrum, Indices and Wall Crossing in N=4 Supersymmetric Yang-Mills Theories

    Full text link
    BPS states in N=4 supersymmetric SU(N) gauge theories in four dimensions can be represented as planar string networks with ends lying on D3-branes. We introduce several protected indices which capture information on the spectrum and various quantum numbers of these states, give their wall crossing formula and describe how using the wall crossing formula we can compute all the indices at all points in the moduli space.Comment: LaTeX file, 33 pages, 15 figure

    Quantizing N=2 Multicenter Solutions

    Full text link
    N=2 supergravity in four dimensions, or equivalently N=1 supergravity in five dimensions, has an interesting set of BPS solutions that each correspond to a number of charged centers. This set contains black holes, black rings and their bound states, as well as many smooth solutions. Moduli spaces of such solutions carry a natural symplectic form which we determine, and which allows us to study their quantization. By counting the resulting wavefunctions we come to an independent derivation of some of the wall-crossing formulae. Knowledge of the explicit form of these wavefunctions allows us to find quantum resolutions to some apparent classical paradoxes such as solutions with barely bound centers and those with an infinitely deep throat. We show that quantum effects seem to cap off the throat at a finite depth and we give an estimate for the corresponding mass gap in the dual CFT. This is an interesting example of a system where quantum effects cannot be neglected at macroscopic scales even though the curvature is everywhere small.Comment: 49 pages + appendice

    Horizon 2020 EuPRAXIA design study

    Get PDF
    • 

    corecore