1,215 research outputs found
Strong nonlinear optical response of graphene flakes measured by four-wave mixing
We present the first experimental investigation of nonlinear optical
properties of graphene flakes. We find that at near infrared frequencies a
graphene monolayer exhibits a remarkably high third-order optical nonlinearity
which is practically independent of the wavelengths of incident light. The
nonlinear optical response can be utilized for imaging purposes, with image
contrasts of graphene which are orders of magnitude higher than those obtained
using linear microscopy.Comment: 4 pages, 5 figure
Re-entrant resonant tunneling
We study the effect of electron-electron interactions on the
resonant-tunneling spectroscopy of the localized states in a barrier. Using a
simple model of three localized states, we show that, due to the Coulomb
interactions, a single state can give rise to two resonant peaks in the
conductance as a function of gate voltage, G(Vg). We also demonstrate that an
additional higher-order resonance with Vg-position in between these two peaks
becomes possibile when interactions are taken into account. The corresponding
resonant-tunneling process involves two-electron transitions. We have observed
both these effects in GaAs transistor microstructures by studying the time
evolution of three adjacent G(Vg) peaks caused by fluctuating occupation of an
isolated impurity (modulator). The heights of the two stronger peaks exibit
in-phase fluctuations. The phase of fluctuations of the smaller middle peak is
opposite. The two stronger peaks have their origin in the same localized state,
and the third one corresponds to a co-tunneling process.Comment: 9 pages, REVTeX, 4 figure
DEVELOPMENT OF GLOBAL POSITIONING UNIT TO PLAY A TRAJECTORY OF A RACING VEHICLE
The global positioning device for playing a race vehicle trajectory was presented. The concept of modeling a trajectory of a particular racing vehicle was given
Manipulation of Microparticles By Bessel Light Beam
We consider perspectives of optical manipulation of microscopic objects in the area of biology, biophysics and medicine. The first part of the work is devoted to a brief review of the microparticles’ manipulation. The second part contains calculations of the focusing of laser radiation parameters and some results on the formation of Bessel light beams. The experimental setup based on the optical manipulation technique of micron-sized particles was developed
- …