258 research outputs found
Accuracy, rationality and specialisation in a generalised model of collective navigation
Animal navigation is a key behavioural process, from localised foraging to global migration. Within
groups individuals may improve their navigational accuracy by following those with more experience
or knowledge, by pooling information from many directional estimates ("many wrongs"), or some
combination of these strategies. Previous agent-based simulations have highlighted that homogeneous
leaderless groups can improve their collective navigation accuracy when individuals preferentially
copy the movement directions of their neighbours while giving a low weighting to their own navigational knowledge. Meanwhile, other studies have demonstrated how specialised leaders may
emerge, and that a small number of such individuals can improve group-level navigation performance.
However, in general, these earlier results either lack a full mathematical grounding or do not fully
consider the effect of individual self-interest. Here we derive and analyse a mathematically tractable
model of collective navigation. We demonstrate that collective navigation is compromised when
individuals seek to optimise their own accuracy in both homogeneous groups and those with differing
navigational abilities. We further demonstrate how heterogeneous navigational strategies (specialised
leaders and followers) may evolve within the model. Our results thus unify different lines of research
in collective navigation and highlight the importance of individual selection in determining group
composition and performance
Correlation dynamics between electrons and ions in the fragmentation of D molecules by short laser pulses
We studied the recollision dynamics between the electrons and D ions
following the tunneling ionization of D molecules in an intense short pulse
laser field. The returning electron collisionally excites the D ion to
excited electronic states from there D can dissociate or be further
ionized by the laser field, resulting in D + D or D + D,
respectively. We modeled the fragmentation dynamics and calculated the
resulting kinetic energy spectrum of D to compare with recent experiments.
Since the recollision time is locked to the tunneling ionization time which
occurs only within fraction of an optical cycle, the peaks in the D kinetic
energy spectra provides a measure of the time when the recollision occurs. This
collision dynamics forms the basis of the molecular clock where the clock can
be read with attosecond precision, as first proposed by Corkum and coworkers.
By analyzing each of the elementary processes leading to the fragmentation
quantitatively, we identified how the molecular clock is to be read from the
measured kinetic energy spectra of D and what laser parameters be used in
order to measure the clock more accurately.Comment: 13 pages with 14 figure
Tunneling Ionization Rates from Arbitrary Potential Wells
We present a practical numerical technique for calculating tunneling
ionization rates from arbitrary 1-D potential wells in the presence of a linear
external potential by determining the widths of the resonances in the spectral
density, rho(E), adiabatically connected to the field-free bound states. While
this technique applies to more general external potentials, we focus on the
ionization of electrons from atoms and molecules by DC electric fields, as this
has an important and immediate impact on the understanding of the multiphoton
ionization of molecules in strong laser fields.Comment: 13 pages, 7 figures, LaTe
Constructing a Stochastic Model of Bumblebee Flights from Experimental Data
PMCID: PMC3592844This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Multi-objective optimization of confidence-based localization in large-scale underwater robotic swarms.
Localization in large-scale underwater swarm robotic systems has increasingly attracted research and industry communities’ attention. An optimized confidence-based localization algorithm is proposed for improving localization coverage and accuracy by promoting robots with high confidence of location estimates to references for their neighboring robots. Confidence update rules based on Bayes filters are proposed based on localization methods’ error characteristics where expected localization error is generated based on measurements such as operational depth and traveled distance. Parameters of the proposed algorithm are then optimized using the Evolutionary Multi-objective Optimization algorithm NSGA-II for localization error and trilateration utilization minimization while maximizing localization confidence and Ultra-Short Base Line utilization. Simulation studies show that a wide localization coverage can be achieved using a single Ultra-Short Base Line system and localization mean error can be reduced by over 45% when algorithm’s parameters are optimized in an underwater swarm of 100 robots
Semiclassical ionization dynamics of the hydrogen molecular ion in an electric field of arbitrary orientation
Quasi-static models of barrier suppression have played a major role in our
understanding of the ionization of atoms and molecules in strong laser fields.
Despite their success, in the case of diatomic molecules these studies have so
far been restricted to fields aligned with the molecular axis. In this paper we
investigate the locations and heights of the potential barriers in the hydrogen
molecular ion in an electric field of arbitrary orientation. We find that the
barriers undergo bifurcations as the external field strength and direction are
varied. This phenomenon represents an unexpected level of intricacy even on
this most elementary level of the dynamics. We describe the dynamics of
tunnelling ionization through the barriers semiclassically and use our results
to shed new light on the success of a recent theory of molecular tunnelling
ionization as well as earlier theories that restrict the electric field to be
aligned with the molecular axis
Multitrophic Interactions in the Sea: Assessing the Effect of Infochemical-Mediated Foraging in a 1-d Spatial Model
The release of chemicals following herbivore grazing on primary producers may provide feeding cues to carnivorous predators, thereby promoting multitrophic interactions. In particular, chemicals released following grazing on phytoplankton by microzooplankton herbivores have been shown to elicit a behavioural foraging response in carnivorous copepods, which may use this chemical information as a mechanism to locate and remain within biologically productive patches of the ocean. In this paper, we use a 1D spatial reaction-diffusion model to simulate a tri-trophic planktonic system in the water column, where predation at the top trophic level (copepods) is affected by infochemicals released by the primary producers forming the bottom trophic level. The effect of the infochemical-mediated predation is investigated by comparing the case where copepods forage randomly to the case where copepods adjust their vertical position to follow the distribution of grazing-induced chemicals. Results indicate that utilization of infochemicals for foraging provides fitness benefits to copepods and stabilizes the system at high nutrient load, whilst also forming a possible mechanism for phytoplankton bloom formation. We also investigate how the copepod efficiency to respond to infochemicals affects the results, and show that small increases (2%) in the ability of copepods to sense infochemicals can promote their persistence in the system. Finally we argue that effectively employing infochemicals for foraging can be an evolutionarily stable strategy for copepods
Neutron skin of Pb from Coherent Pion Photoproduction
Information on the size and shape of the neutron skin on Pb has been
extracted from coherent pion photoproduction cross sections measured using the
Crystal Ball together with the Glasgow tagger at the MAMI electron beam
facility. On exploitation of an interpolated fit of a theoretical model to the
measured cross sections the half-height radius and diffuseness of the neutron
distribution are found to be 6.70 fm and 0.55 fm respectively, corresponding to a neutron
skin thickness =0.15 fm.
The results give the first successful extraction of a neutron skin with an
electromagnetic probe and indicate the skin of Pb has a halo character.
The measurement provides valuable new constraints on both the structure of
nuclei and the equation of state for neutron-rich matter.Comment: 4 figures 5 pages. Version submitted to journal. Includes additional
studies of systematic effects in the extracted diffuseness, which led to a
small increase in the quoted systematic error. These additional studies are
discussed in the revised manuscript. Also includes minor editorial
improvements to the tex
Collective animal navigation and migratory culture: From theoretical models to empirical evidence
Animals often travel in groups, and their navigational decisions can be influenced by social interactions. Both theory and empirical observations suggest that such collective navigation can result in individuals improving their ability to find their way and could be one of the key benefits of sociality for these species. Here, we provide an overview of the potential mechanisms underlying collective navigation, review the known, and supposed, empirical evidence for such behaviour and highlight interesting directions for future research. We further explore how both social and collective learning during group navigation could lead to the accumulation of knowledge at the population level, resulting in the emergence of migratory culture
Determination of the Dalitz plot parameter alpha for the decay eta->3pi^0 with the Crystal Ball at MAMI-B
A precise measurement of the Dalitz plot parameter, alpha, for the eta->3pi^0
decay is presented. The experiment was performed with the Crystal Ball and TAPS
large acceptance photon detectors at the tagged photon beam facility of the
MAMI-B electron accelerator in Mainz. High statistics of 1.8*10^6 eta->3pi^0
events were obtained, giving the result alpha = -0.032 +/- 0.002(stat) +/-
0.002(syst).Comment: 9 pages, 6 figures, published in the online-first section of EPJ A,
included changes referees asked for, added DO
- …