335 research outputs found
A latent variable ranking model for content-based retrieval
34th European Conference on IR Research, ECIR 2012, Barcelona, Spain, April 1-5, 2012. ProceedingsSince their introduction, ranking SVM models [11] have become a powerful tool for training content-based retrieval systems. All we need for training a model are retrieval examples in the form of triplet constraints, i.e. examples specifying that relative to some query, a database item a should be ranked higher than database item b. These types of constraints could be obtained from feedback of users of the retrieval system. Most previous ranking models learn either a global combination of elementary similarity functions or a combination defined with respect to a single database item. Instead, we propose a “coarse to fine” ranking model where given a query we first compute a distribution over “coarse” classes and then use the linear combination that has been optimized for queries of that class. These coarse classes are hidden and need to be induced by the training algorithm. We propose a latent variable ranking model that induces both the latent classes and the weights of the linear combination for each class from ranking triplets. Our experiments over two large image datasets and a text retrieval dataset show the advantages of our model over learning a global combination as well as a combination for each test point (i.e. transductive setting). Furthermore, compared to the transductive approach our model has a clear computational advantages since it does not need to be retrained for each test query.Spanish Ministry of Science and Innovation (JCI-2009-04240)EU PASCAL2 Network of Excellence (FP7-ICT-216886
Path-Fault-Tolerant Approximate Shortest-Path Trees
Let be an -nodes non-negatively real-weighted undirected graph.
In this paper we show how to enrich a {\em single-source shortest-path tree}
(SPT) of with a \emph{sparse} set of \emph{auxiliary} edges selected from
, in order to create a structure which tolerates effectively a \emph{path
failure} in the SPT. This consists of a simultaneous fault of a set of at
most adjacent edges along a shortest path emanating from the source, and it
is recognized as one of the most frequent disruption in an SPT. We show that,
for any integer parameter , it is possible to provide a very sparse
(i.e., of size ) auxiliary structure that carefully
approximates (i.e., within a stretch factor of ) the true
shortest paths from the source during the lifetime of the failure. Moreover, we
show that our construction can be further refined to get a stretch factor of
and a size of for the special case , and that it can be
converted into a very efficient \emph{approximate-distance sensitivity oracle},
that allows to quickly (even in optimal time, if ) reconstruct the
shortest paths (w.r.t. our structure) from the source after a path failure,
thus permitting to perform promptly the needed rerouting operations. Our
structure compares favorably with previous known solutions, as we discuss in
the paper, and moreover it is also very effective in practice, as we assess
through a large set of experiments.Comment: 21 pages, 3 figures, SIROCCO 201
The Role of Scientometric Thresholds for the Evaluation of Grant Applications
The present study focuses on data from the Russian Science Foundation (RSF). The authors analyze the effect of using quantitative indicators in grant allocation by using the natural experiment with the increasing publication threshold for principal investigators between two waves of grant selections in 2014 and 2017. The authors selected the relatively new RSF as our case study due to its policy to establish a publication threshold for grants’ principal investigators. The policy change provides the authors with the opportunity to study whether reliance on bibliometric indicators brings better results in the project evaluation process. This analysis included two groups of researchers: 1) physicists and 2) social sciences and humanities scholars. Scopus was sourced to collect bibliographic data, while the foundation’s website was used to check data on the funded projects. The following questions are explored in detail: whether the policy affected the distribution of funds to researchers with a better publication record, the strategies of increasing publications by individual researchers, and the differences, if any, in policy effects between disciplines. The authors found that the selection among physicists in the first wave was already effective as the grant recipients are prolific authors who publish many highly cited papers before 2014. In addition, the results indicated that the group of research leaders in physics did not significantly change between the two selected waves of competitions (from 2014 to 2017). Although social scientists demonstrated a relatively weak ability to publish internationally, the increase in scientometric expectations has improved the publication record regarding the quantity and quality of publications
A unifying principle underlying the extracellular field potential spectral responses in the human cortex
Electrophysiological mass potentials show complex spectral changes upon neuronal activation. However, it is unknown to what extent these complex band-limited changes are interrelated or, alternatively, reflect separate neuronal processes. To address this question, intracranial electrocorticograms (ECoG) responses were recorded in patients engaged in visuomotor tasks. We found that in the 10- to 100-Hz frequency range there was a significant reduction in the exponent chi of the 1/f(chi) component of the spectrum associated with neuronal activation. In a minority of electrodes showing particularly high activations the exponent reduction was associated with specific band-limited power modulations: emergence of a high gamma (80-100 Hz) and a decrease in the alpha (9-12 Hz) peaks. Importantly, the peaks\u27 height was correlated with the 1/f(chi) exponent on activation. Control simulation ruled out the possibility that the change in 1/f(chi) exponent was a consequence of the analysis procedure. These results reveal a new global, cross-frequency (10-100 Hz) neuronal process reflected in a significant reduction of the power spectrum slope of the ECoG signal
Reversible Photoreduction as a Trigger for Photoresponsive Gels
We present here a new type of photoresponsive, reversible low molecular weight gel. All previous examples rely on a photoisomerisation, ring-closing or dimerization. We show that photoreduction of a perylene bisimide gelator results in the formation of a stable radical anion. The formation of the radical anion results in a change in the packing of the perylene bisimides in the self-assembled aggregates, leading to a change in fibrous network and an increase in the rheological properties of the gels. An increase in the rheological properties is extremely rare for a photoresponsive gel; normally, irradiation results in a gel-to-sol transition, and the gel falling apart. As the radical anion decays, which takes several hours in air, the original gel properties are restored. This photoreduction can be cycled many times. Finally, we show that the mechanical properties are different between irradiated and nonirradiated sections in a patterned gel
Study of GEM-like detectors with resistive electrodes for RICH applications
We have developed prototypes of GEM-like detectors with resistive electrodes
to be used as RICH photodetectors equipped with CsI photocathodes. The main
advantages of these detectors are their intrinsic spark protection and
possibility to operate at high gain (~10E5) in many gases including poorly
quenched ones, allowing for the adoption of windowless configurations in which
the radiator gas is also used in the chamber. Results of systematic studies of
the resistive GEMs combined with CsI photocathodes are presented: its quantum
efficiency, rate characteristics, long-term stability, etc. On the basis of the
obtained results, we believe that the new detector will be a promising
candidate for upgrading the ALICE RICH detectorComment: Presented at the International Workshop RICH-2007, Trieste, Italy,
October 200
An Optical Readout TPC (O-TPC) for Studies in Nuclear Astrophysics With Gamma-Ray Beams at HIgS
We report on the construction, tests, calibrations and commissioning of an
Optical Readout Time Projection Chamber (O-TPC) detector operating with a
CO2(80%) + N2(20%) gas mixture at 100 and 150 Torr. It was designed to measure
the cross sections of several key nuclear reactions involved in stellar
evolution. In particular, a study of the rate of formation of oxygen and carbon
during the process of helium burning will be performed by exposing the chamber
gas to intense nearly mono-energetic gamma-ray beams at the High Intensity
Gamma Source (HIgS) facility. The O-TPC has a sensitive target-drift volume of
30x30x21 cm^3. Ionization electrons drift towards a double parallel grid
avalanche multiplier, yielding charge multiplication and light emission.
Avalanche induced photons from N2 emission are collected, intensified and
recorded with a Charge Coupled Device (CCD) camera, providing two-dimensional
track images. The event's time projection (third coordinate) and the deposited
energy are recorded by photomultipliers and by the TPC charge-signal,
respectively. A dedicated VME-based data acquisition system and associated data
analysis tools were developed to record and analyze these data. The O-TPC has
been tested and calibrated with 3.183 MeV alpha-particles emitted by a 148Gd
source placed within its volume with a measured energy resolution of 3.0%.
Tracks of alpha and 12C particles from the dissociation of 16O and of three
alpha-particles from the dissociation of 12C have been measured during initial
in-beam test experiments performed at the HIgS facility at Duke University. The
full detection system and its performance are described and the results of the
preliminary in-beam test experiments are reported.Comment: Supported by the Richard F. Goodman Yale-Weizmann Exchange Program,
ACWIS, NY, and USDOE grant Numbers: DE-FG02-94ER40870 and DE-FG02-97ER4103
Efficient photoelectrochemical Kolbe C-C coupling at BiVO4 electrodes under visible light irradiation
Electrochemical Kolbe C-C coupling of carboxylic acids at Pt electrodes has been studied for over 150 years and remains relevant today because renewable electricity is envisaged to make an increasing contribution to clean chemical processes and carboxylic acids are readily available precursors for chemical synthesis. Traditional electrochemical Kolbe occurs typically at very high potential (>10 V) which is required to achieve high selectivity for C-C coupling. Here we describe porous BiVO4 photoelectrodes that mediate C-C Kolbe coupling with near quantitative faradaic efficiency under visible light irradiation at <2 V. High substrate concentrations are also found to stabilise the double layer avoiding the need for additional supporting electrolyte. Comparison with related literature describing photocatalytic Kolbe C-C coupling shows that the apparent quantum yield can be raised from <1% to 12% demonstrating the distinct advantage of using photoelectrochemistry in this system
THGEM-based detectors for sampling elements in DHCAL: laboratory and beam evaluation
We report on the results of an extensive R&D program aimed at the evaluation
of Thick-Gas Electron Multipliers (THGEM) as potential active elements for
Digital Hadron Calorimetry (DHCAL). Results are presented on efficiency, pad
multiplicity and discharge probability of a 10x10 cm2 prototype detector with 1
cm2 readout pads. The detector is comprised of single- or double-THGEM
multipliers coupled to the pad electrode either directly or via a resistive
anode. Investigations employing standard discrete electronics and the KPiX
readout system have been carried out both under laboratory conditions and with
muons and pions at the CERN RD51 test beam. For detectors having a
charge-induction gap, it has been shown that even a ~6 mm thick single-THGEM
detector reached detection efficiencies above 95%, with pad-hit multiplicity of
1.1-1.2 per event; discharge probabilities were of the order of 1e-6 - 1e-5
sparks/trigger, depending on the detector structure and gain. Preliminary beam
tests with a WELL hole-structure, closed by a resistive anode, yielded
discharge probabilities of <2e-6 for an efficiency of ~95%. Methods are
presented to reduce charge-spread and pad multiplicity with resistive anodes.
The new method showed good prospects for further evaluation of very thin
THGEM-based detectors as potential active elements for DHCAL, with competitive
performances, simplicity and robustness. Further developments are in course.Comment: 15 pages, 11 figures, MPGD2011 conference proceedin
How Gibbs distributions may naturally arise from synaptic adaptation mechanisms. A model-based argumentation
This paper addresses two questions in the context of neuronal networks
dynamics, using methods from dynamical systems theory and statistical physics:
(i) How to characterize the statistical properties of sequences of action
potentials ("spike trains") produced by neuronal networks ? and; (ii) what are
the effects of synaptic plasticity on these statistics ? We introduce a
framework in which spike trains are associated to a coding of membrane
potential trajectories, and actually, constitute a symbolic coding in important
explicit examples (the so-called gIF models). On this basis, we use the
thermodynamic formalism from ergodic theory to show how Gibbs distributions are
natural probability measures to describe the statistics of spike trains, given
the empirical averages of prescribed quantities. As a second result, we show
that Gibbs distributions naturally arise when considering "slow" synaptic
plasticity rules where the characteristic time for synapse adaptation is quite
longer than the characteristic time for neurons dynamics.Comment: 39 pages, 3 figure
- …