43,242 research outputs found

    Real time flight simulation methodology

    Get PDF
    An example sensitivity study is presented to demonstrate how a digital autopilot designer could make a decision on minimum sampling rate for computer specification. It consists of comparing the simulated step response of an existing analog autopilot and its associated aircraft dynamics to the digital version operating at various sampling frequencies and specifying a sampling frequency that results in an acceptable change in relative stability. In general, the zero order hold introduces phase lag which will increase overshoot and settling time. It should be noted that this solution is for substituting a digital autopilot for a continuous autopilot. A complete redesign could result in results which more closely resemble the continuous results or which conform better to original design goals

    A polymorphic reconfigurable emulator for parallel simulation

    Get PDF
    Microprocessor and arithmetic support chip technology was applied to the design of a reconfigurable emulator for real time flight simulation. The system developed consists of master control system to perform all man machine interactions and to configure the hardware to emulate a given aircraft, and numerous slave compute modules (SCM) which comprise the parallel computational units. It is shown that all parts of the state equations can be worked on simultaneously but that the algebraic equations cannot (unless they are slowly varying). Attempts to obtain algorithms that will allow parellel updates are reported. The word length and step size to be used in the SCM's is determined and the architecture of the hardware and software is described

    Testing a Simplified Version of Einstein's Equations for Numerical Relativity

    Get PDF
    Solving dynamical problems in general relativity requires the full machinery of numerical relativity. Wilson has proposed a simpler but approximate scheme for systems near equilibrium, like binary neutron stars. We test the scheme on isolated, rapidly rotating, relativistic stars. Since these objects are in equilibrium, it is crucial that the approximation work well if we are to believe its predictions for more complicated systems like binaries. Our results are very encouraging.Comment: 9 pages (RevTeX 3.0 with 6 uuencoded figures), CRSR-107

    Two phase galaxy formation: The Evolutionary Properties of Galaxies

    Get PDF
    We use our model for the formation and evolution of galaxies within a two-phase galaxy formation scenario, showing that the high-redshift domain typically supports the growth of spheroidal systems, whereas at low redshifts the predominant baryonic growth mechanism is quiescent and may therefore support the growth of a disc structure. Under this framework we investigate the evolving galaxy population by comparing key observations at both low and high-redshifts, finding generally good agreement. By analysing the evolutionary properties of this model, we are able to recreate several features of the evolving galaxy population with redshift, naturally reproducing number counts of massive star-forming galaxies at high redshifts, along with the galaxy scaling relations, star formation rate density and evolution of the stellar mass function. Building upon these encouraging agreements, we make model predictions that can be tested by future observations. In particular, we present the expected evolution to z=2 of the super-massive black hole mass function, and we show that the gas fraction in galaxies should decrease with increasing redshift in a mass, with more and more evolution going to higher and higher masses. Also, the characteristic transition mass from disc to bulge dominated system should decrease with increasing redshift.Comment: 15 pages, 11 figures. Version polished for publication in MNRA

    Reservoirs and radiocarbon: <sup>14</sup>C dating problems in Myvatnssveit, Northern Iceland

    Get PDF
    This paper examines 2 potential sources of the radiocarbon offset between human and terrestrial mammal (horse) bones recovered from Norse (~AD 870–1000) pagan graves in Mývatnssveit, north Iceland. These are the marine and freshwater 14C reservoir effects that may be incorporated into human bones from dietary sources. The size of the marine 14C reservoir effect (MRE) during the Norse period was investigated by measurement of multiple paired samples (terrestrial mammal and marine mollusk shell) at 2 archaeological sites in Mývatnssveit and 1 site on the north Icelandic coast. These produced 3 new ΔR values for the north coast of Iceland, indicating a ΔR of 106 ± 10 14C yr at AD 868–985, and of 144 ± 28 14C yr at AD 1280–1400. These values are statistically comparable and give an overall weighted mean ΔR of 111 ± 10 14C yr. The freshwater reservoir effect was similarly quantified using freshwater fish bones from a site in Mývatnssveit. These show an offset of between 1285 and 1830 14C yr, where the fish are depleted in 14C relative to the terrestrial mammals. This is attributed to the input of geothermally derived CO2 into the groundwater and subsequently into Lake Mývatn. We conclude the following: i) some of the Norse inhabitants of Mývatnssveit incorporated non-terrestrial resources into their diet that may be identified from the stable isotope composition of their bone collagen; ii) the MRE off the north Icelandic coast during the Norse period fits a spatial gradient of wider North Atlantic MRE values with increasing values to the northwest; and iii) it is important to consider the effect that geothermal activity could have on the 14C activity of samples influenced by groundwater at Icelandic archaeological sites

    Simulation-based intelligent robotic agent for Space Station Freedom

    Get PDF
    A robot control package is described which utilizes on-line structural simulation of robot manipulators and objects in their workspace. The model-based controller is interfaced with a high level agent-independent planner, which is responsible for the task-level planning of the robot's actions. Commands received from the agent-independent planner are refined and executed in the simulated workspace, and upon successful completion, they are transferred to the real manipulators

    Combined observations of meteors by image-orthicon television camera and multi-station radar

    Get PDF
    Observations from multiple sites of a radar network and by television of 29 individual meteors from February 1969 through June 1970 are reported. Only 12 of the meteors did not appear to fragment over all the observed portion of their trajectories. From these 12, the relation for the radar magnitude to the panchromatic absolute magnitude was found in terms of velocity of the meteor. A very tentative fit to the data on the duration of long enduring echoes versus visual absolute magnitude is made. The exponential decay characteristics of the later parts of several of the light curves are pointed out as possible evidence of mutual coalescence of droplets into which the meteoroid has completely broken

    Non-relativistic limit in the 2+1 Dirac Oscillator: A Ramsey Interferometry Effect

    Get PDF
    We study the non-relativistic limit of a paradigmatic model in Relativistic Quantum Mechanics, the two-dimensional Dirac oscillator. Remarkably, we find a novel kind of Zitterbewegung which persists in this non-relativistic regime, and leads to an observable deformation of the particle orbit. This effect can be interpreted in terms of a Ramsey Interferometric phenomenon, allowing an insightful connection between Relativistic Quantum Mechanics and Quantum Optics. Furthermore, subsequent corrections to the non-relativistic limit, which account for the usual spin-orbit Zitterbewegung, can be neatly understood in terms of a Mach-Zehnder interferometer.Comment: RevTex4 file, color figures, submitted for publicatio

    Effects of Bulk and Surface Conductivity on the Performance of CdZnTe Pixel Detectors

    Get PDF
    We studied the effects of bulk and surface conductivity on the performance of high-resistivity CdZnTe (CZT) pixel detectors with Pt contacts. We emphasize the difference in mechanisms of the bulk and surface conductivity as indicated by their different temperature behaviors. In addition, the existence of a thin (10-100 A) oxide layer on the surface of CZT, formed during the fabrication process, affects both bulk and surface leakage currents. We demonstrate that the measured I-V dependencies of bulk current can be explained by considering the CZT detector as a metal-semiconductor-metal system with two back-to-back Schottky-barrier contacts. The high surface leakage current is apparently due to the presence of a low-resistivity surface layer that has characteristics which differ considerably from those of the bulk material. This surface layer has a profound effect on the charge collection efficiency in detectors with multi-contact geometry; some fraction of the electric field lines originated on the cathode intersects the surface areas between the pixel contacts where the charge produced by an ionizing particle gets trapped. To overcome this effect we place a grid of thin electrodes between the pixel contacts; when the grid is negatively biased, the strong electric field in the gaps between the pixels forces the electrons landing on the surface to move toward the contacts, preventing the charge loss. We have investigated these effects by using CZT pixel detectors indium bump bonded to a custom-built VLSI readout chip
    corecore