77,292 research outputs found

    An improved panel method for the solution of three-dimensional leading edge vortex flows Volume 2: User's guide and programmer's document

    Get PDF
    A computer program developed for solving the subsonic, three dimensional flow over wing-body configurations with leading edge vortex separation is presented. Instructions are given for the proper set up and input of a problem into the computer code. Program input formats and output are described, as well as the overlay structure of the program. The program is written in FORTRAN

    Resummation and Shower Studies

    Full text link
    The transverse momentum spectra of the Z and Higgs bosons are studied, as probes of the consequences of multiple parton emissions in hadronic events. Emphasis is put on constraints, present in showers, that go beyond conventional leading log. It is shown that, if such constraints are relaxed, better agreement can be obtained with experimental data and with resummation descriptions.Comment: 6 pages, LaTeX, 3 eps figures, submitted to the proceedings of the Workshop on Physics at TeV Colliders, Les Houches, France, 26 May -- 6 June 200

    An improved panel method for the solution of three-dimensional leading-edge vortex flows. Volume 1: Theory document

    Get PDF
    An improved panel method for the solution of three dimensional flow and wing and wing-body combinations with leading edge vortex separation is presented. The method employs a three dimensional inviscid flow model in which the configuration, the rolled-up vortex sheets, and the wake are represented by quadratic doublet distributions. The strength of the singularity distribution as well as shape and position of the vortex spirals are computed in an iterative fashion starting with an assumed initial sheet geometry. The method calculates forces and moments as well as detail surface pressure distributions. Improvements include the implementation of improved panel numerics for the purpose of elimination the highly nonlinear effects of ring vortices around double panel edges, and the development of a least squares procedure for damping vortex sheet geometry update instabilities. A complete description of the method is included. A variety of cases generated by the computer program implementing the method are presented which verify the mathematical assumptions of the method and which compare computed results with experimental data to verify the underlying physical assumptions made by the method

    Spectral properties, generation order parameters and luminosities for spin-powered X-ray pulsars

    Full text link
    We show the spectral properties of 15 spin-powered X-ray pulsars, and the correlation between the average power-law photon index and spin-down rate. Generation order parameters (GOPs) based on polar-cap models are introduced to characterize the X-ray pulsars. We calculate three definitions of generation order parameters due to the different effects of magnetic and electric fields on photon absorption during cascade processes, and study the relations between the GOPs and spectral properties of X-ray pulsars. There exists a possible correlation between the photon index and GOP in our pulsar sample. Furthermore, we present a method due to the concept of GOPs to estimate the non-thermal X-ray luminosity for spin-powered pulsars. Then X-ray luminosity is calculated in the context of our polar-cap accelerator model which is well consistent with the most observed X-ray pulsar data. The ratio between X-ray luminosity estimated by our method and the pulsar's spin-down power is well consistent with the LX∼10−3LsdL_{\rm X}\sim 10^{-3}L_{\rm sd} feature.Comment: 20 pages, 8 figures, 1 table, revised version for the publication in Ap

    Vertical field-effect transistors in III-V semiconductors

    Get PDF
    Vertical metal-semiconductor field-effect transistors in GaAs/GaAlAs and vertical metal-oxide-semiconductor field-effect transistors (MOSFET's) in InP/GaInPAs materials have been fabricated. These structures make possible short channel devices with gate lengths defined by epitaxy rather than by submicron photolithography processes. Devices with transconductances as high as 280 mS/mm in GaAs and 60 mS/mm (with 100-nm gate oxide) for the InP/GaInPAs MOSFET's were observed

    Phased arrays of buried-ridge InP/InGaAsP diode lasers

    Get PDF
    Phase-locked arrays of buried-ridge InP/InGaAsP lasers, emitting at 1.3 µm, were grown by liquid phase epitaxy. The arrays consist of index-guided, buried-ridge lasers which are coupled via their evanescent optical fields. This index-guided structure makes it possible to avoid the occurrence of lower gain in the interchannel regions. As a result, the buried-ridge arrays oscillate mainly in the fundamental supermode, which yields single lobed, narrow far-field patterns. Single lobed beams less than 4° in width were obtained from buried-ridge InP/InGaAsP phased arrays up to more than twice the threshold current

    Phase-locking characteristics of coupled ridge-waveguide InP/InGaAsP diode lasers

    Get PDF
    The phase-locking characteristics of two coupled, ridge waveguide InP/InGaAsP diode lasers emitting at 1.2 µm were investigated experimentally. The phase locking of the lasers was verified by the observation of phase-locked modes (supermodes) in the spectrally resolved near fields and distinct diffraction patterns in the far field. By independent control of the laser currents it was possible to vary continuously the mutual phase shift between the two phase-locked lasers and thus steer the far-field diffraction lobes. In addition, the separate current control could be utilized to obtain single longitudinal mode oscillation of the phase-locked lasers. Variation in one of the laser currents resulted then in tuning of the wavelength of this single mode over a range of 90 Å

    Tabulator Redux: writing Into the Semantic Web

    No full text
    A first category of Semantic Web browsers were designed to present a given dataset (an RDF graph) for perusal, in various forms. These include mSpace, Exhibit, and to a certain extent Haystack. A second category tackled mechanisms and display issues around linked data gathered on the fly. These include Tabulator, Oink, Disco, Open Link Software's Data Browser, and Object Browser. The challenge of once that data is gathered, how might it be edited, extended and annotated has so far been left largely unaddressed. This is not surprising: there are a number of steep challenges for determining how to support editing information in the open web of linked data. These include the representation of both the web of documents and the web of things, and the relationships between them; ensuring the user is aware of and has control over the social context such as licensing and privacy of data being entered, and, on a web in which anyone can say anything about anything, helping the user intuitively select the things which they actually wish to see in a given situation. There is also the view update problem: the difficulty of reflecting user edits back through functions used to map web data to a screen presentation. In the latest version of the Tabulator project, described in this paper we have focused on providing the write side of the readable/writable web. Our approach has been to allow modification and addition of information naturally within the browsing interface, and to relay changes to the server triple by triple for least possible brittleness (there is no explicit 'save' operation). Challenges which remain include the propagation of changes by collaborators back to the interface to create a shared editing system. To support writing across (semantic) Web resources, our work has contributed several technologies, including a HTTP/SPARQL/Update-based protocol between an editor (or other system) and incrementally editable resources stored in an open source, world-writable 'data wiki'. This begins enabling the writable Semantic Web
    • …
    corecore