14,710 research outputs found
Theory of controlled quantum dynamics
We introduce a general formalism, based on the stochastic formulation of
quantum mechanics, to obtain localized quasi-classical wave packets as
dynamically controlled systems, for arbitrary anharmonic potentials. The
control is in general linear, and it amounts to introduce additional quadratic
and linear time-dependent terms to the given potential. In this way one can
construct for general systems either coherent packets moving with constant
dispersion, or dynamically squeezed packets whose spreading remains bounded for
all times. In the standard operatorial framework our scheme corresponds to a
suitable generalization of the displacement and scaling operators that generate
the coherent and squeezed states of the harmonic oscillator.Comment: LaTeX, A4wide, 28 pages, no figures. To appear in J. Phys. A: Math.
Gen., April 199
Orbit decidability and the conjugacy problem for some extensions of groups
Given a short exact sequence of groups with certain conditions, , we prove that has solvable conjugacy problem if and only if
the corresponding action subgroup is orbit decidable. From
this, we deduce that the conjugacy problem is solvable, among others, for all
groups of the form , , , and with virtually solvable action
group . Also, we give an easy way of constructing
groups of the form and with
unsolvable conjugacy problem. On the way, we solve the twisted conjugacy
problem for virtually surface and virtually polycyclic groups, and give an
example of a group with solvable conjugacy problem but unsolvable twisted
conjugacy problem. As an application, an alternative solution to the conjugacy
problem in is given
The solution space of metabolic networks: producibility, robustness and fluctuations
Flux analysis is a class of constraint-based approaches to the study of
biochemical reaction networks: they are based on determining the reaction flux
configurations compatible with given stoichiometric and thermodynamic
constraints. One of its main areas of application is the study of cellular
metabolic networks. We briefly and selectively review the main approaches to
this problem and then, building on recent work, we provide a characterization
of the productive capabilities of the metabolic network of the bacterium E.coli
in a specified growth medium in terms of the producible biochemical species.
While a robust and physiologically meaningful production profile clearly
emerges (including biomass components, biomass products, waste etc.), the
underlying constraints still allow for significant fluctuations even in key
metabolites like ATP and, as a consequence, apparently lay the ground for very
different growth scenarios.Comment: 10 pages, prepared for the Proceedings of the International Workshop
on Statistical-Mechanical Informatics, March 7-10, 2010, Kyoto, Japa
Nonlocal Games and Quantum Permutation Groups
We present a strong connection between quantum information and quantum
permutation groups. Specifically, we define a notion of quantum isomorphisms of
graphs based on quantum automorphisms from the theory of quantum groups, and
then show that this is equivalent to the previously defined notion of quantum
isomorphism corresponding to perfect quantum strategies to the isomorphism
game. Moreover, we show that two connected graphs and are quantum
isomorphic if and only if there exists and that are
in the same orbit of the quantum automorphism group of the disjoint union of
and . This connection links quantum groups to the more concrete notion
of nonlocal games and physically observable quantum behaviours. We exploit this
link by using ideas and results from quantum information in order to prove new
results about quantum automorphism groups, and about quantum permutation groups
more generally. In particular, we show that asymptotically almost surely all
graphs have trivial quantum automorphism group. Furthermore, we use examples of
quantum isomorphic graphs from previous work to construct an infinite family of
graphs which are quantum vertex transitive but fail to be vertex transitive,
answering a question from the quantum group literature.
Our main tool for proving these results is the introduction of orbits and
orbitals (orbits on ordered pairs) of quantum permutation groups. We show that
the orbitals of a quantum permutation group form a coherent
configuration/algebra, a notion from the field of algebraic graph theory. We
then prove that the elements of this quantum orbital algebra are exactly the
matrices that commute with the magic unitary defining the quantum group. We
furthermore show that quantum isomorphic graphs admit an isomorphism of their
quantum orbital algebras which maps the adjacency matrix of one graph to that
of the other.Comment: 39 page
Thermodynamics of rotating self-gravitating systems
We investigate the statistical equilibrium properties of a system of
classical particles interacting via Newtonian gravity, enclosed in a
three-dimensional spherical volume. Within a mean-field approximation, we
derive an equation for the density profiles maximizing the microcanonical
entropy and solve it numerically. At low angular momenta, i.e. for a slowly
rotating system, the well-known gravitational collapse ``transition'' is
recovered. At higher angular momenta, instead, rotational symmetry can
spontaneously break down giving rise to more complex equilibrium
configurations, such as double-clusters (``double stars''). We analyze the
thermodynamics of the system and the stability of the different equilibrium
configurations against rotational symmetry breaking, and provide the global
phase diagram.Comment: 12 pages, 9 figure
Spin-resolved scattering through spin-orbit nanostructures in graphene
We address the problem of spin-resolved scattering through spin-orbit
nanostructures in graphene, i.e., regions of inhomogeneous spin-orbit coupling
on the nanometer scale. We discuss the phenomenon of spin-double refraction and
its consequences on the spin polarization. Specifically, we study the
transmission properties of a single and a double interface between a normal
region and a region with finite spin-orbit coupling, and analyze the
polarization properties of these systems. Moreover, for the case of a single
interface, we determine the spectrum of edge states localized at the boundary
between the two regions and study their properties
- …