18,470 research outputs found
Local correlation functional for electrons in two dimensions
We derive a local approximation for the correlation energy in two-dimensional
electronic systems. In the derivation we follow the scheme originally developed
by Colle and Salvetti for three dimensions, and consider a Gaussian
approximation for the pair density. Then, we introduce an ad-hoc modification
which better accounts for both the long-range correlation, and the
kinetic-energy contribution to the correlation energy. The resulting functional
is local, and depends parametrically on the number of electrons in the system.
We apply this functional to the homogeneous electron gas and to a set of
two-dimensional quantum dots covering a wide range of electron densities and
thus various amounts of correlation. In all test cases we find an excellent
agreement between our results and the exact correlation energies. Our
correlation functional has a form that is simple and straightforward to
implement, but broadly outperforms the commonly used local-density
approximation
Correlations between hidden units in multilayer neural networks and replica symmetry breaking
We consider feed-forward neural networks with one hidden layer, tree
architecture and a fixed hidden-to-output Boolean function. Focusing on the
saturation limit of the storage problem the influence of replica symmetry
breaking on the distribution of local fields at the hidden units is
investigated. These field distributions determine the probability for finding a
specific activation pattern of the hidden units as well as the corresponding
correlation coefficients and therefore quantify the division of labor among the
hidden units. We find that although modifying the storage capacity and the
distribution of local fields markedly replica symmetry breaking has only a
minor effect on the correlation coefficients. Detailed numerical results are
provided for the PARITY, COMMITTEE and AND machines with K=3 hidden units and
nonoverlapping receptive fields.Comment: 9 pages, 3 figures, RevTex, accepted for publication in Phys. Rev.
Storage capacity of correlated perceptrons
We consider an ensemble of single-layer perceptrons exposed to random
inputs and investigate the conditions under which the couplings of these
perceptrons can be chosen such that prescribed correlations between the outputs
occur. A general formalism is introduced using a multi-perceptron costfunction
that allows to determine the maximal number of random inputs as a function of
the desired values of the correlations. Replica-symmetric results for and
are compared with properties of two-layer networks of tree-structure and
fixed Boolean function between hidden units and output. The results show which
correlations in the hidden layer of multi-layer neural networks are crucial for
the value of the storage capacity.Comment: 16 pages, Latex2
Evaluation of advanced geopotential models for operational orbit determination
To meet future orbit determination accuracy requirements for different NASA projects, analyses are performed using Tracking and Data Relay Satellite System (TDRSS) tracking measurements and orbit determination improvements in areas such as the modeling of the Earth's gravitational field. Current operational requirements are satisfied using the Goddard Earth Model-9 (GEM-9) geopotential model with the harmonic expansion truncated at order and degree 21 (21-by-21). This study evaluates the performance of 36-by-36 geopotential models, such as the GEM-10B and Preliminary Goddard Solution-3117 (PGS-3117) models. The Earth Radiation Budget Satellite (ERBS) and LANDSAT-5 are the spacecraft considered in this study
On the violation of a local form of the Lieb-Oxford bound
In the framework of density-functional theory, several popular density
functionals for exchange and correlation have been constructed to satisfy a
local form of the Lieb-Oxford bound. In its original global expression, the
bound represents a rigorous lower limit for the indirect Coulomb interaction
energy. Here we employ exact-exchange calculations for the G2 test set to show
that the local form of the bound is violated in an extensive range of both the
dimensionless gradient and the average electron density. Hence, the results
demonstrate the severity in the usage of the local form of the bound in
functional development. On the other hand, our results suggest alternative ways
to construct accurate density functionals for the exchange energy.Comment: (Submitted on 27 April 2012
Optical injection and terahertz detection of the macroscopic Berry curvature
We propose an experimental scheme to probe the Berry curvature of solids. Our
method is sensitive to arbitrary regions of the Brillouin zone, and employs
only basic optical and terahertz techniques to yield a background free signal.
Using semiconductor quantum wells as a prototypical system, we discuss how to
inject Berry curvature macroscopically, and probe it in a way that provides
information about the underlying microscopic Berry curvature.Comment: 4 pages, accepted in Physical Review Letter
Multilayer neural networks with extensively many hidden units
The information processing abilities of a multilayer neural network with a
number of hidden units scaling as the input dimension are studied using
statistical mechanics methods. The mapping from the input layer to the hidden
units is performed by general symmetric Boolean functions whereas the hidden
layer is connected to the output by either discrete or continuous couplings.
Introducing an overlap in the space of Boolean functions as order parameter the
storage capacity if found to scale with the logarithm of the number of
implementable Boolean functions. The generalization behaviour is smooth for
continuous couplings and shows a discontinuous transition to perfect
generalization for discrete ones.Comment: 4 pages, 2 figure
Localization problem of the quasiperiodic system with the spin orbit interaction
We study one dimensional quasiperiodic system obtained from the tight-binding
model on the square lattice in a uniform magnetic field with the spin orbit
interaction. The phase diagram with respect to the Harper coupling and the
Rashba coupling are proposed from a number of numerical studies including a
multifractal analysis. There are four phases, I, II, III, and IV in this order
from weak to strong Harper coupling. In the weak coupling phase I all the wave
functions are extended, in the intermediate coupling phases II and III mobility
edges exist, and accordingly both localized and extended wave functions exist,
and in the strong Harper coupling phase IV all the wave functions are
localized. Phase I and Phase IV are related by the duality, and phases II and
III are related by the duality, as well. A localized wave function is related
to an extended wave function by the duality, and vice versa. The boundary
between phases II and III is the self-dual line on which all the wave functions
are critical. In the present model the duality does not lead to pure spectra in
contrast to the case of Harper equation.Comment: 10 pages, 11 figure
Plasmodium falciparum glutamate dehydrogenase a is dispensable and not a drug target during erythrocytic development
<p>Background: Plasmodium falciparum contains three genes encoding potential glutamate dehydrogenases. The protein encoded by gdha has previously been biochemically and structurally characterized. It was suggested that it is important for the supply of reducing equivalents during intra-erythrocytic development of Plasmodium and, therefore, a suitable drug target.</p>
<p>Methods: The gene encoding the NADP(H)-dependent GDHa has been disrupted by reverse genetics in P. falciparum and the effect on the antioxidant and metabolic capacities of the resulting mutant parasites was investigated.</p>
<p>Results: No growth defect under low and elevated oxygen tension, no up-or down-regulation of a number of antioxidant and NADP(H)-generating proteins or mRNAs and no increased levels of GSH were detected in the D10(Delta gdha) parasite lines. Further, the fate of the carbon skeleton of [(13)C] labelled glutamine was assessed by metabolomic studies, revealing no differences in the labelling of a-ketoglutarate and other TCA pathway intermediates between wild type and mutant parasites.</p>
<p>Conclusions: First, the data support the conclusion that D10(Delta gdha) parasites are not experiencing enhanced oxidative stress and that GDHa function may not be the provision of NADP(H) for reductive reactions. Second, the results imply that the cytosolic, NADP(H)-dependent GDHa protein is not involved in the oxidative deamination of glutamate but that the protein may play a role in ammonia assimilation as has been described for other NADP(H)dependent GDH from plants and fungi. The lack of an obvious phenotype in the absence of GDHa may point to a regulatory role of the protein providing glutamate (as nitrogen storage molecule) in situations where the parasites experience a limiting supply of carbon sources and, therefore, under in vitro conditions the enzyme is unlikely to be of significant importance. The data imply that the protein is not a suitable target for future drug development against intra-erythrocytic parasite development.</p>
- …