21 research outputs found

    Planning and reporting of quality-of-life outcomes in cancer trials

    Get PDF
    BACKGROUND Information about the impact of cancer treatments on patients' quality of life (QoL) is of paramount importance to patients and treating oncologists. Cancer trials that do not specify QoL as an outcome or fail to report collected QoL data, omit crucial information for decision making. To estimate the magnitude of these problems, we investigated how frequently QoL outcomes were specified in protocols of cancer trials and subsequently reported. DESIGN Retrospective cohort study of RCT protocols approved by six research ethics committees in Switzerland, Germany, and Canada between 2000 and 2003. We compared protocols to corresponding publications, which were identified through literature searches and investigator surveys. RESULTS Of the 173 cancer trials, 90 (52%) specified QoL outcomes in their protocol, 2 (1%) as primary and 88 (51%) as secondary outcome. Of the 173 trials, 35 (20%) reported QoL outcomes in a corresponding publication (4 modified from the protocol), 18 (10%) were published but failed to report QoL outcomes in the primary or a secondary publication, and 37 (21%) were not published at all. Of the 83 (48%) trials that did not specify QoL outcomes in their protocol, none subsequently reported QoL outcomes. Failure to report pre-specified QoL outcomes was not associated with industry sponsorship (versus non-industry), sample size, and multicentre (versus single centre) status but possibly with trial discontinuation. CONCLUSIONS About half of cancer trials specified QoL outcomes in their protocols. However, only 20% reported any QoL data in associated publications. Highly relevant information for decision making is often unavailable to patients, oncologists, and health policymaker

    Premature Discontinuation of Prospective Clinical Studies Approved by a Research Ethics Committee - A Comparison of Randomised and Non-Randomised Studies.

    Get PDF
    Premature discontinuation of clinical studies affects about 25% of randomised controlled trials (RCTs) which raises concerns about waste of scarce resources for research. The risk of discontinuation of non-randomised prospective studies (NPSs) is yet unclear. To compare the proportion of discontinued studies between NPSs and RCTs that received ethical approval. We systematically surveyed prospective longitudinal clinical studies that were approved by a single REC in Freiburg, Germany between 2000 and 2002. We collected study characteristics, identified subsequent publications, and surveyed investigators to elucidate whether a study was discontinued and, if so, why. Of 917 approved studies, 547 were prospective longitudinal studies (306 RCTs and 241 NPSs). NPSs were on average smaller than RCTs, more frequently single centre and pilot studies, and less frequently funded by industry. NPSs were less frequently discontinued than RCTs: 32/221 (14%) versus 78/288 (27%, p<0.001, missing data excluded). Poor recruitment was the most frequent reason for discontinuation in both NPSs (36%) and RCTs (37%). Compared to RCTs, NPSs were at lower risk for discontinuation. Measures to reliably predict, sustain, and stimulate recruitment could prevent discontinuation of many RCTs but also of some NPSs

    Agreements between Industry and Academia on Publication Rights: A Retrospective Study of Protocols and Publications of Randomized Clinical Trials.

    Get PDF
    BACKGROUND: Little is known about publication agreements between industry and academic investigators in trial protocols and the consistency of these agreements with corresponding statements in publications. We aimed to investigate (i) the existence and types of publication agreements in trial protocols, (ii) the completeness and consistency of the reporting of these agreements in subsequent publications, and (iii) the frequency of co-authorship by industry employees. METHODS AND FINDINGS: We used a retrospective cohort of randomized clinical trials (RCTs) based on archived protocols approved by six research ethics committees between 13 January 2000 and 25 November 2003. Only RCTs with industry involvement were eligible. We investigated the documentation of publication agreements in RCT protocols and statements in corresponding journal publications. Of 647 eligible RCT protocols, 456 (70.5%) mentioned an agreement regarding publication of results. Of these 456, 393 (86.2%) documented an industry partner's right to disapprove or at least review proposed manuscripts; 39 (8.6%) agreements were without constraints of publication. The remaining 24 (5.3%) protocols referred to separate agreement documents not accessible to us. Of those 432 protocols with an accessible publication agreement, 268 (62.0%) trials were published. Most agreements documented in the protocol were not reported in the subsequent publication (197/268 [73.5%]). Of 71 agreements reported in publications, 52 (73.2%) were concordant with those documented in the protocol. In 14 of 37 (37.8%) publications in which statements suggested unrestricted publication rights, at least one co-author was an industry employee. In 25 protocol-publication pairs, author statements in publications suggested no constraints, but 18 corresponding protocols documented restricting agreements. CONCLUSIONS: Publication agreements constraining academic authors' independence are common. Journal articles seldom report on publication agreements, and, if they do, statements can be discrepant with the trial protocol

    Prevalence, characteristics, and publication of discontinued randomized trials.

    Get PDF
    IMPORTANCE: The discontinuation of randomized clinical trials (RCTs) raises ethical concerns and often wastes scarce research resources. The epidemiology of discontinued RCTs, however, remains unclear. OBJECTIVES: To determine the prevalence, characteristics, and publication history of discontinued RCTs and to investigate factors associated with RCT discontinuation due to poor recruitment and with nonpublication. DESIGN AND SETTING: Retrospective cohort of RCTs based on archived protocols approved by 6 research ethics committees in Switzerland, Germany, and Canada between 2000 and 2003. We recorded trial characteristics and planned recruitment from included protocols. Last follow-up of RCTs was April 27, 2013. MAIN OUTCOMES AND MEASURES: Completion status, reported reasons for discontinuation, and publication status of RCTs as determined by correspondence with the research ethics committees, literature searches, and investigator surveys. RESULTS: After a median follow-up of 11.6 years (range, 8.8-12.6 years), 253 of 1017 included RCTs were discontinued (24.9% [95% CI, 22.3%-27.6%]). Only 96 of 253 discontinuations (37.9% [95% CI, 32.0%-44.3%]) were reported to ethics committees. The most frequent reason for discontinuation was poor recruitment (101/1017; 9.9% [95% CI, 8.2%-12.0%]). In multivariable analysis, industry sponsorship vs investigator sponsorship (8.4% vs 26.5%; odds ratio [OR], 0.25 [95% CI, 0.15-0.43]; P < .001) and a larger planned sample size in increments of 100 (-0.7%; OR, 0.96 [95% CI, 0.92-1.00]; P = .04) were associated with lower rates of discontinuation due to poor recruitment. Discontinued trials were more likely to remain unpublished than completed trials (55.1% vs 33.6%; OR, 3.19 [95% CI, 2.29-4.43]; P < .001). CONCLUSIONS AND RELEVANCE: In this sample of trials based on RCT protocols from 6 research ethics committees, discontinuation was common, with poor recruitment being the most frequently reported reason. Greater efforts are needed to ensure the reporting of trial discontinuation to research ethics committees and the publication of results of discontinued trials

    Literaturverzeichnis

    No full text

    PD-L1 protein expression in breast cancer is rare, enriched in basal-like tumours and associated with infiltrating lymphocytes

    Get PDF
    BACKGROUND: Expression of programmed death ligand 1 (PD-L1) in solid tumours has been shown to predict whether patients are likely to respond to anti-PD-L1 therapies. To estimate the therapeutic potential of PD-L1 inhibition in breast cancer, we evaluated the prevalence and significance of PD-L1 protein expression in a large collection of breast tumours. PATIENTS AND METHODS: Correlations between CD274 (PD-L1) copy number, transcript and protein levels were evaluated in tumours from 418 patients recruited to the METABRIC genomic study. Immunohistochemistry was used to detect PD-L1 protein in breast tumours in tissue microarrays from 5763 patients recruited to the SEARCH population-based study (N = 4079) and the NEAT randomised, controlled trial (N = 1684). RESULTS: PD-L1 protein data was available for 3916 of the possible 5763 tumours from the SEARCH and NEAT studies. PD-L1 expression by immune cells was observed in 6% (235/3916) of tumours and expression by tumour cells was observed in just 1.7% (66/3916). PD-L1 was most frequently expressed in basal-like tumours. This was observed both where tumours were subtyped by combined copy number and expression profiling [39% (17/44) of IntClust 10 i.e. basal-like tumours were PD-L1 immune cell positive; P < 0.001] and where a surrogate IHC-based classifier was used [19% (56/302) of basal-like tumours were PD-L1 immune cell positive; P < 0.001]. Moreover, CD274 (PD-L1) amplification was observed in five tumours of which four were IntClust 10. Expression of PD-L1 by either tumour cells or infiltrating immune cells was positively correlated with infiltration by both cytotoxic and regulatory T cells (P < 0.001). There was a nominally significant association between PD-L1 and improved disease-specific survival (hazard ratio 0.53, 95% confidence interval 0.26-1.07; P = 0.08) in ER-negative disease. CONCLUSIONS: Expression of PD-L1 is rare in breast cancer, markedly enriched in basal-like tumours and is correlated with infiltrating lymphocytes. PD-L1 inhibition may benefit the 19% of patients with basal-like tumours in which the protein is expressed. NEAT CLINICALTRIALSGOV: NCT00003577.This work was supported by Cancer Research UK (C490/ A10119 and C490/A10124), the Cambridge Experimental Cancer Medicine Centre and the NIHR Cambridge Biomedical Research Centre. HRA is an NIHR Academic Clinical Lecturer and supported by a Career Development Fellowship from the Pathological Society of Great Britain and Northern Ireland and a Starter Grant for Clinical Lecturers from the Academy of Medical Sciences, UK.This is the author accepted manuscript. The final version is available from OUP at http://dx.doi.org/10.1093/annonc/mdv19
    corecore