30,605 research outputs found
Inseparability criteria for bipartite quantum states
We provide necessary and sufficient conditions for the partial transposition
of bipartite harmonic quantum states to be nonnegative. The conditions are
formulated as an infinite series of inequalities for the moments of the state
under study. The violation of any inequality of this series is a sufficient
condition for entanglement. Previously known entanglement conditions are shown
to be special cases of our approach.Comment: 4 pages, no figures. Small misprints were correcte
Weak reactions on 12C within the Continuum Random Phase Approximation with partial occupancies
We extend our previous studies of the neutrino-induced reactions on 12C and
muon capture to include partial occupation of nuclear subshells in the
framework of the continuum random phase approximation. We find, in contrast to
the work by Auerbach et al., that a partial occupation of the p1/2 subshell
reduces the inclusive cross sections only slightly. The extended model
describes the muon capture rate and the 12C(nu_e,e-)12N cross section very
well. The recently updated flux and the improved model bring the calculated
12C(nu_mu,mu^-)12N cross section (~ 17.5 10^{-40} cm^2) and the data (12.4 +/-
0.3(stat.) +/- 1.8(syst.) 10^{-40} cm^2) closer together, but does not remove
the discrepancy fully.Comment: 12 pages, 2 figure
Estimates of weak and electromagnetic nuclear decay signatures for neutrino reactions in Super-Kamiokande
We estimate possible delayed β decay signatures of the neutrino induced reactions on 16O in a two-step model: the primary neutrino (ν,l) process, where l is the lepton in the final state, is described within the random phase approximation, while the subsequent decay of the excited nuclear state in the final channel is treated within the statistical model. We calculate partial reaction cross sections leading to β unstable nuclei. We consider neutrino energies up to 500 MeV, relevant for atmospheric neutrino detection in Super-Kamiokande, and supernova neutrino spectra
Advances in induction-heated plasma torch technology
Continuing research has resulted in significant advances in induction-heated plasma torch technology which extend and enhance its potential for broad range of uses in chemical processing, materials development and testing, and development of large illumination sources. Summaries of these advances are briefly described
On the eigenvalues of the spatial sign covariance matrix in more than two dimensions
Acknowledgments Alexander Dürre was supported in part by the Collaborative Research Grant 823 of the German Research Foundation. David E. Tyler was supported in part by the National Science Foundation grant DMS-1407751. A visit of Daniel Vogel to David E. Tyler was supported by a travel grant from the Scottish Universities Physics Alliance. The authors are grateful to the editors and referees for their constructive comments.Non peer reviewedPostprin
Model dependence of the neutrino-deuteron disintegration cross sections at low energies
Model dependence of the reaction rates for the weak breakup of deuterons by
low energy neutrinos is studied starting from the cross sections derived from
potential models and also from pionless effective field theory. Choosing the
spread of the reaction yields, caused basically by the different ways the
two-body currents are treated, as a measure of the model dependent uncertainty,
we conclude that the breakup reactions are 2 - 3 % uncertain, and that
even the ratio of the charged to neutral current reaction rates is also
2 % uncertain.Comment: 13 pages, 1 figure, 6 tables, version published in Phys. Rev. C 75,
044610 (2007
- …