63 research outputs found

    Classification of Event-Related Potentials Associated with Response Errors in Actors and Observers Based on Autoregressive Modeling

    Get PDF
    Event-Related Potentials (ERPs) provide non-invasive measurements of the electrical activity on the scalp related to the processing of stimuli and preparation of responses by the brain. In this paper an ERP-signal classification method is proposed for discriminating between ERPs of correct and incorrect responses of actors and of observers seeing an actor making such responses. The classification method targeted signals containing error-related negativity (ERN) and error positivity (Pe) components, which are typically associated with error processing in the human brain. Feature extraction consisted of Multivariate Autoregressive modeling combined with the Simulated Annealing technique. The resulting information was subsequently classified by means of an Artificial Neural Network (ANN) using back-propagation algorithm under the “leave-one-out cross-validation” scenario and the Fuzzy C-Means (FCM) algorithm. The ANN consisted of a multi-layer perceptron (MLP). The approach yielded classification rates of up to 85%, both for the actors’ correct and incorrect responses and the corresponding ERPs of the observers. The electrodes needed for such classifications were situated mainly at central and frontal areas. Results provide indications that the classification of the ERN is achievable. Furthermore, the availability of the Pe signals, in addition to the ERN, improves the classification, and this is more pronounced for observers’ signals. The proposed ERP-signal classification method provides a promising tool to study error detection and observational-learning mechanisms in performance monitoring and joint-action research, in both healthy and patient populations

    Imaging fascicular organization of rat sciatic nerves with fast neural electrical impedance tomography

    Get PDF
    Imaging compound action potentials (CAPs) in peripheral nerves could help avoid side effects in neuromodulation by selective stimulation of identified fascicles. Existing methods have low resolution, limited imaging depth, or are invasive. Fast neural electrical impedance tomography (EIT) allows fascicular CAP imaging with a resolution of <200 µm, <1 ms using a non-penetrating flexible nerve cuff electrode array. Here, we validate EIT imaging in rat sciatic nerve by comparison to micro-computed tomography (microCT) and histology with fluorescent dextran tracers. With EIT, there are reproducible localized changes in tissue impedance in response to stimulation of individual fascicles (tibial, peroneal and sural). The reconstructed EIT images correspond to microCT scans and histology, with significant separation between the fascicles (p < 0.01). The mean fascicle position is identified with an accuracy of 6% of nerve diameter. This suggests fast neural EIT can reliably image the functional fascicular anatomy of the nerves and so aid selective neuromodulation

    Tikhonov regularization using a minimum-product criterion: Application to brain electrical tomography

    No full text
    Abstract – Tikhonov regularization is applied to the inversion of EEG potentials. The discrete model of the inversion problem results from an analytic technique providing information about extended intracranial distributions, with separate current source and sink positions. A three-layered concentric sphere model is used for representing head geometry. The selected regularization parameter is the minimizer of the product of the norm of the Tikhonov regularized solution and the norm of the corresponding residual. The simulations performed indicate that this regularization parameter selection method is more robust than the empirical Composite REsidual and Smoothing Operator approach, in cases where only gaussian measurement noise exists in the discrete inverse model equation. Therefore the minimum product criterion can be used in real Evoked Potentials ’ data inversions, for the creation of brain electrical activity tomographic images, when the amount of noise present in the measured data is unknown
    corecore