7 research outputs found
Sp1-regulated expression of p11 contributes to motor neuron degeneration by membrane insertion of TASK1
Disruption in membrane excitability contributes to malfunction and differential vulnerability
of specific neuronal subpopulations in a number of neurological diseases. The adaptor protein
p11, and background potassium channel TASK1, have overlapping distributions in the CNS.
Here, we report that the transcription factor Sp1 controls p11 expression, which impacts on
excitability by hampering functional expression of TASK1. In the SOD1-G93A mouse model of
ALS, Sp1-p11-TASK1 dysregulation contributes to increased excitability and vulnerability of
motor neurons. Interference with either Sp1 or p11 is neuroprotective, delaying neuron loss
and prolonging lifespan in this model. Nitrosative stress, a potential factor in human neurodegeneration,
stimulated Sp1 expression and human p11 promoter activity, at least in part,
through a Sp1-binding site. Disruption of Sp1 or p11 also has neuroprotective effects in a
traumatic model of motor neuron degeneration. Together our work suggests the Sp1-p11-
TASK1 pathway is a potential target for treatment of degeneration of motor neurons
ΠΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π° ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π±ΠΈΠΎΠ³Π΅Π½Π½ΡΡ ΠΊΠ²Π°Π½ΡΠΎΠ²ΡΡ ΡΠΎΡΠ΅ΠΊ Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ ΡΡΠ»ΡΡΠΈΠ΄ΠΎΠ² ΡΠ΅ΡΠ΅Π±ΡΠ°, ΠΊΠ°Π΄ΠΌΠΈΡ ΠΈ ΡΠΈΠ½ΠΊΠ° Π΄Π»Ρ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ Π±ΠΈΠΎΠ½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ²
The possibility of applying silver, cadmium and zinc sulfide nanoparticles (npAg2S, npCdS and npZnS) obtained using Shewanella oneidensis MR-1 and Bacillus subtilis 168 bacterial cultures for the creation of a new class of polymeric bionanocomposite materials was investigated. Biogenic nanoparticles obtained in aqueous solutions of the corresponding salts in the presence of various types of microorganisms are characterized by the presence of protein molecules on their surface. The molecules composition is determined by the bacterial culture. Proteins stabilize them and allow the nanoparticles to covalently join the active groups of polymeric carriers. Aminated chloromethylated polystyrene microspheres, as well as ion-exchange resins of various types, were used as polymeric matrices. Analysis of interaction with them can be used as a method for studying the properties of biogenic nanoparticles of metal sulfides for subsequent successful selection of a polymeric carrier. The immobilization of biogenic nanoparticles of metal sulfides onto the surface of aminated chloromethylated polystyrene microspheres was found to depend on the level of stability of aqueous nanoparticle suspensions and is determined by the negative charge of biogenic npAg2S, npCdS and npZnS, which suggests covalent binding and the electrostatic interaction of the components in the composition of the polymer bionanocomposite. A comparative analysis of the parameters of nanoparticles depending on the strain used in the biosynthesis was carried out. Analysis of the main physicochemical characteristics of npCdS and npZnS showed that the small size of nanoparticles (npCdS - 5 nm, npZnS - up to 2 nm) and the presence of luminescence peaks at wavelengths less than 400 nm classify them in the blue region of the fluorescence spectrum and identify them as quantum dots. Thus, the possibility of introducing fluorescent quantum dots of nanoparticles of metal sulfides of biogenic origin into various polymeric matrices has been demonstrated, which contributes to the expansion of the horizons for using a new class of nanoparticles to create polymeric bionanocomposites.ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ ΡΡΠ»ΡΡΠΈΠ΄Π° ΡΠ΅ΡΠ΅Π±ΡΠ°, ΠΊΠ°Π΄ΠΌΠΈΡ ΠΈ ΡΠΈΠ½ΠΊΠ° (npAg2S, npCdS ΠΈ npZnS), ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΠΊΡΠ»ΡΡΡΡ Shewanella oneidensis MR-1 ΠΈ Bacillus subtilis 168, Π΄Π»Ρ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠ»Π°ΡΡΠ° ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ
Π±ΠΈΠΎΠ½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ². ΠΠΈΠΎΠ³Π΅Π½Π½ΡΠ΅ Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡΡ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π² Π²ΠΎΠ΄Π½ΡΡ
ΡΠ°ΡΡΠ²ΠΎΡΠ°Ρ
ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ
ΡΠΎΠ»Π΅ΠΉ Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠΈΠΏΠΎΠ² ΠΌΠΈΠΊΡΠΎΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠΎΠ², Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΡΡ Π½Π°Π»ΠΈΡΠΈΠ΅ΠΌ Π½Π° ΠΈΡ
ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ Π±Π΅Π»ΠΊΠΎΠ²ΡΡ
ΠΌΠΎΠ»Π΅ΠΊΡΠ», ΡΠΎΡΡΠ°Π² ΠΊΠΎΡΠΎΡΡΡ
ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΡΠ»ΡΡΡΡΠΎΠΉ. ΠΠ΅Π»ΠΊΠΈ ΡΡΠ°Π±ΠΈΠ»ΠΈΠ·ΠΈΡΡΡΡ Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡΡ ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΠΈΠΌ ΠΊΠΎΠ²Π°Π»Π΅Π½ΡΠ½ΠΎ ΠΏΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΡΡ ΠΊ Π°ΠΊΡΠΈΠ²Π½ΡΠΌ Π³ΡΡΠΏΠΏΠ°ΠΌ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ
Π½ΠΎΡΠΈΡΠ΅Π»Π΅ΠΉ. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ
ΠΌΠ°ΡΡΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ Π°ΠΌΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ Ρ
Π»ΠΎΡΠΌ,Π΅ΡΠΈΠ»ΠΈΡΠΎΠ²Π°Π½-Π½ΡΠ΅ ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠΎΠ»ΡΠ½ΡΠ΅ ΠΌΠΈΠΊΡΠΎΡΡΠ΅ΡΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΈΠΎΠ½ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΡΠ΅ ΡΠΌΠΎΠ»Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠΈΠΏΠΎΠ². ΠΠ½Π°Π»ΠΈΠ· Π²Π·Π°ΠΈΠ»ΡΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ Ρ Π½ΠΈΠΌΠΈ Π»ΡΠΆΠ΅Ρ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π»ΡΠ΅ΡΠΎΠ΄Π° ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΡΠ²ΠΎΠΉΡΡΠ² Π±ΠΈΠΎΠ³Π΅Π½Π½ΡΡ
Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ ΡΡΠ»ΡΡΠΈΠ΄ΠΎΠ² ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² Π΄Π»Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅Π³ΠΎ ΡΡΠΏΠ΅ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ±ΠΎΡΠ° ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ Π½ΠΎΡΠΈΡΠ΅Π»Ρ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°ΡΠΈΡ Π±ΠΈΠΎΠ³Π΅Π½Π½ΡΡ
Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ ΡΡΠ»ΡΡΠΈΠ΄ΠΎΠ² ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² Π½Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ Π°ΠΌΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Ρ
Π»ΠΎΡΠΌΠ΅ΡΠΈΠ»ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠΎΠ»ΡΠ½ΡΡ
ΠΌΠΈΠΊΡΠΎΡΡΠ΅Ρ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΡΡΠΎΠ²Π½Ρ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ Π²ΠΎΠ΄Π½ΡΡ
ΡΡΡΠΏΠ΅Π½Π·ΠΈΠΉ Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ Π·Π°ΡΡΠ΄ΠΎΠΌ Π±ΠΈΠΎΠ³Π΅Π½Π½ΡΡ
npAg2S, npCdS ΠΈ npZnS, ΡΡΠΎ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ ΠΊΠΎΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠ²ΡΠ·ΡΠ²Π°Π½ΠΈΠ΅ ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² Π² ΡΠΎΡΡΠ°Π²Π΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ Π±ΠΈΠΎΠ½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ°. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΡΠ°ΠΌΠΌΠ°, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΠΎΠ³ΠΎ Π² Π±ΠΈΠΎΡΠΈΠ½ΡΠ΅Π·Π΅. ΠΠ½Π°Π»ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
ΡΠΈΠ·ΠΈΠΊΠΎ-Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ npCdS ΠΈ npZnS ΠΏΠΎΠΊΠ°Π·Π°Π», ΡΡΠΎ Π½Π΅Π±ΠΎΠ»ΡΡΠΈΠ΅ ΡΠ°Π·ΠΌΠ΅ΡΡ Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ (npCdS - 5 Π½ΠΌ, npZnS - Π΄ΠΎ 2 Π½ΠΌ) ΠΈ Π½Π°Π»ΠΈΡΠΈΠ΅ Π»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠ½ΡΡ
ΠΏΠΈΠΊΠΎΠ² Π½Π° Π΄Π»ΠΈΠ½Π°Ρ
Π²ΠΎΠ»Π½ ΠΌΠ΅Π½Π΅Π΅ 400 Π½ΠΌ, ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠΈΡ ΠΈΡ
ΠΊ ΡΠΈΠ½Π΅ΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠΏΠ΅ΠΊΡΡΠ° ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΊΠ»Π°ΡΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°ΡΡ ΠΈΡ
ΠΊΠ°ΠΊ ΠΊΠ²Π°Π½ΡΠΎΠ²ΡΠ΅ ΡΠΎΡΠΊΠΈ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π±ΡΠ»Π° ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ Π²Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠ½ΡΡ
ΠΊΠ²Π°Π½ΡΠΎΠ²ΡΡ
ΡΠΎΡΠ΅ΠΊ Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ ΡΡΠ»ΡΡΠΈΠ΄ΠΎΠ² ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² Π±ΠΈΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΡΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΠ΅ ΠΌΠ°ΡΡΠΈΡΡ, ΡΡΠΎ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΠ΅Ρ ΡΠ°ΡΡΠΈΡΠ΅Π½ΠΈΡ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠΎΠ² ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠ»Π°ΡΡΠ° Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ Π΄Π»Ρ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ
Π±ΠΈΠΎΠ½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΎΠ²
Stylistics and national culture
The article analyses the interconnection of national culture and some expressive stylistic means used in works by Mario Vargas Llosa
Prospects of Applying Biogenic Quantum Dots of Silver, Cadmium and Zinc Sulfides Nanoparticles to Create Polymeric Bionanocomposite Materials
The possibility of applying silver, cadmium and zinc sulfide nanoparticles (npAg2S, npCdS and npZnS) obtained using Shewanella oneidensis MR-1 and Bacillus subtilis 168 bacterial cultures for the creation of a new class of polymeric bionanocomposite materials was investigated. Biogenic nanoparticles obtained in aqueous solutions of the corresponding salts in the presence of various types of microorganisms are characterized by the presence of protein molecules on their surface. The molecules composition is determined by the bacterial culture. Proteins stabilize them and allow the nanoparticles to covalently join the active groups of polymeric carriers. Aminated chloromethylated polystyrene microspheres, as well as ion-exchange resins of various types, were used as polymeric matrices. Analysis of interaction with them can be used as a method for studying the properties of biogenic nanoparticles of metal sulfides for subsequent successful selection of a polymeric carrier. The immobilization of biogenic nanoparticles of metal sulfides onto the surface of aminated chloromethylated polystyrene microspheres was found to depend on the level of stability of aqueous nanoparticle suspensions and is determined by the negative charge of biogenic npAg2S, npCdS and npZnS, which suggests covalent binding and the electrostatic interaction of the components in the composition of the polymer bionanocomposite. A comparative analysis of the parameters of nanoparticles depending on the strain used in the biosynthesis was carried out. Analysis of the main physicochemical characteristics of npCdS and npZnS showed that the small size of nanoparticles (npCdS - 5 nm, npZnS - up to 2 nm) and the presence of luminescence peaks at wavelengths less than 400 nm classify them in the blue region of the fluorescence spectrum and identify them as quantum dots. Thus, the possibility of introducing fluorescent quantum dots of nanoparticles of metal sulfides of biogenic origin into various polymeric matrices has been demonstrated, which contributes to the expansion of the horizons for using a new class of nanoparticles to create polymeric bionanocomposites