312 research outputs found
Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering
Twisted Laguerre-Gaussian lasers, with orbital angular momentum and
characterised by doughnut shaped intensity profiles, provide a transformative
set of tools and research directions in a growing range of fields and
applications, from super-resolution microcopy and ultra-fast optical
communications to quantum computing and astrophysics. The impact of twisted
light is widening as recent numerical calculations provided solutions to
long-standing challenges in plasma-based acceleration by allowing for high
gradient positron acceleration. The production of ultrahigh intensity twisted
laser pulses could then also have a broad influence on relativistic
laser-matter interactions. Here we show theoretically and with ab-initio
three-dimensional particle-in-cell simulations, that stimulated Raman
backscattering can generate and amplify twisted lasers to Petawatt intensities
in plasmas. This work may open new research directions in non-linear optics and
high energy density science, compact plasma based accelerators and light
sources.Comment: 18 pages, 4 figures, 1 tabl
The effect of phase front deformation on the growth of the filamentation instability in laser–plasma interactions
Laser pulses of 0.9 kJ/1 ns/1053 nm were focused onto low-Z plastic targets in both spherical and planar geometry. The uniformity of the resulting plasma production was studied using x-ray pinhole imaging. Evidence is provided suggesting that thermal filamentation starts to occur for irradiances on the target of I lambda(2) >= 10(14) W cm(-2) mu m(2), even on deployment of phase plates to improve the focal spot spatial uniformity. The experiments are supported by both analytical modelling and two-dimensional particle-in-cell simulations. The implications for the applications of laser-plasma interactions that require high degrees of uniform irradiation are discussed
High Repetition-Rate Wakefield Electron Source Generated by Few-millijoule, 30 femtosecond Laser Pulses on a Density Downramp
We report on an experimental demonstration of laser wakefield electron
acceleration using a sub-TW power laser by tightly focusing 30-fs laser pulses
with only 8 mJ pulse energy on a 100 \mu m scale gas target. The experiments
are carried out at an unprecedented 0.5 kHz repetition rate, allowing "real
time" optimization of accelerator parameters. Well-collimated and stable
electron beams with a quasi-monoenergetic peak in excess of 100 keV are
measured. Particle-in-cell simulations show excellent agreement with the
experimental results and suggest an acceleration mechanism based on electron
trapping on the density downramp, due to the time varying phase velocity of the
plasma waves.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
New longitudinal mode and compression of pair ions in plasma
Positive and negative ions forming the so-called pair plasma differing in sign of their charge but asymmetric in mass and temperature support a new acoustic-like mode. The condition for the excitation of ion sound wave through electron beam induced Cherenkov instability is also investigated. This beam can generate a perturbation in the pair ion plasmas in the presence of electrons when there is number density, temperature, and mass difference in the two species of ions. Basic emphasis is on the focusing of ion sound waves, and we show how, in the area of localization of wave energy, the density of pair particles increases while electrons are pushed away from that region. Further, this localization of wave is dependent on the shape of the pulse. Considering the example of pancake and bullet shaped pulses, we find that only the former leads to compression of pair ions in the supersonic regime of the focusing region. Here, possible existence of regions where pure pair particles can exist may also be speculated which is not only useful from academic point of view but also to mimic the situation of plasma (electron positron asymmetric and symmetric) observed in astrophysical environment
Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering
Twisted Laguerre–Gaussian lasers, with orbital angular momentum and characterized by doughnut-shaped intensity profiles, provide a transformative set of tools and research directions in a growing range of fields and applications, from super-resolution microcopy and ultra-fast optical communications to quantum computing and astrophysics. The impact of twisted light is widening as recent numerical calculations provided solutions to long-standing challenges in plasma-based acceleration by allowing for high-gradient positron acceleration. The production of ultra-high-intensity twisted laser pulses could then also have a broad influence on relativistic laser–matter interactions. Here we show theoretically and with ab initio three-dimensional particle-in-cell simulations that stimulated Raman backscattering can generate and amplify twisted lasers to petawatt intensities in plasmas. This work may open new research directions in nonlinear optics and high–energy-density science, compact plasma-based accelerators and light sources
High orbital angular momentum harmonic generation
We identify and explore a high orbital angular momentum (OAM) harmonics generation and amplification mechanism that manipulates the OAM independently of any other laser property, by preserving the initial laser wavelength, through stimulated Raman backscattering in a plasma. The high OAM harmonics spectra can extend at least up to the limiting value imposed by the paraxial approximation. We show with theory and particle-in-cell simulations that the orders of the OAM harmonics can be tuned according to a selection rule that depends on the initial OAM of the interacting waves. We illustrate the high OAM harmonics generation in a plasma using several examples including the generation of prime OAM harmonics. The process can also be realized in any nonlinear optical Kerr media supporting three-wave interactions.info:eu-repo/semantics/publishedVersio
High orbital angular momentum harmonic generation
We identify and explore a high orbital angular momentum (OAM) harmonics generation and amplification mechanism that manipulates the OAM independently of any other laser property, by preserving the initial laser wavelength, through stimulated Raman backscattering in a plasma. The high OAM harmonics spectra can extend at least up to the limiting value imposed by the paraxial approximation. We show with theory and particle-in-cell simulations that the orders of the OAM harmonics can be tuned according to a selection rule that depends on the initial OAM of the interacting waves. We illustrate the high OAM harmonics generation in a plasma using several examples including the generation of prime OAM harmonics. The process can also be realized in any nonlinear optical Kerr media supporting three-wave interactions
Nonlinear ion-acoustic (IA) waves driven in a cylindrically symmetric flow
By employing a self-similar, two-fluid MHD model in a cylindrical geometry,
we study the features of nonlinear ion-acoustic (IA) waves which propagate in
the direction of external magnetic field lines in space plasmas. Numerical
calculations not only expose the well-known three shapes of nonlinear
structures (sinusoidal, sawtooth, and spiky or bipolar) which are observed by
numerous satellites and simulated by models in a Cartesian geometry, but also
illustrate new results, such as, two reversely propagating nonlinear waves,
density dips and humps, diverging and converging electric shocks, etc. A case
study on Cluster satellite data is also introduced.Comment: accepted by AS
- …