1,094 research outputs found
DESIGN OF A STATED RANKING EXPERIMENT TO STUDY INTERACTIVE FREIGHT BEHAVIOUR: AN APPLICATION TO ROME'S LTZ
City logistics policies require an understanding of several issues (e.g. freight distribution context, preferences and relationship among agents) seldom accounted for in current research. Policies run the risk of producing unsatisfactory results because behavioural and contextual aspects are not considered. The acquisition of relevant data is crucial to test hypothesis and forecast agents' reactions to policy changes. Despite recent methodological advances in modelling interactive behaviour the development of apt survey instruments is still lacking to test innovative policies acceptability. This paper expands and innovate the methodological literature by describing a stated ranking experiment to study freight agent interactive behaviour and discusses the experimental design implemented to incorporate agent-specific priors when efficient design techniques are employed.urban freight distribution, group decision making, agent-specific interaction, stated preference, stated ranking experiments
Quantitative imaging of the collective cell movements shaping an embryo
The recent development of imaging and image processing techniques, such as 4D microscopy and 3D cell tracking, enables analysis through quantification of the movement of large cell populations in vivo. These imaging approaches provide an opportunity to study embryonic morphogenesis during development from the level of cellular processes to the scale of entire organism. Image analysis reveals cell collective behaviors that shape an embryo and offers some surprising insights into the cell-cell interactions involved in concerted movements. We illustrate the power of this approach by studying the early development of Drosophila embryos
Stepwise Progression of Embryonic Patterning
It is long established that the graded distribution of Dorsal transcription factor influences spatial domains of gene expression along the dorsoventral (DV) axis of Drosophila melanogaster embryos. However, the more recent realization that Dorsal levels also change with time raises the question of whether these dynamics are instructive. An overview of DV axis patterning is provided, focusing on new insights identified through quantitative analysis of temporal changes in Dorsal target gene expression from one nuclear cycle to the next (‘steps’). Possible roles for the stepwise progression of this patterning program are discussed including (i) tight temporal regulation of signaling pathway activation, (ii) control of gene expression cohorts, and (iii) ensuring the irreversibility of the patterning and cell fate specification process
Effect of biocomposite edible coatings based on pea starch and guar gum on nutritional quality of ‘Valencia’ orange during storage
Application of environmentally friendly components is an approach for substitution of synthetic substances in commercial waxes applied to citrus. In this study, the effect of biocomposite edible coatings based on pea starch and guar gum (PSGG) on total vitamin C, phenolic, flavonoid, anthocyanins, and carotenoid content, and antioxidant capacity of ‘Valencia’ orange stored at 5 °C and 20 °C for four weeks were evaluated. The fruits were coated by a single layer PSGG coating, blended composite PSGG coating containing shellac (Sh) and oleic acid as hydrophobic compounds (PSGG-Sh), and a layer-by-layer (LBL) coating (PSGG as an internal layer and Sh as an external layer). The results showed no significant differences in changes of bioactive compounds between coating treatments after first week storage at both temperatures. The PSGG coatings incorporated with hydrophobic compounds (PSGG-Sh) better preserved the nutritional value and the antioxidant potential of oranges during storage compared with other treatments. The single layer PSGG coating was almost similar to bilayer coating in preserving nutritional value of fruit during storage and less effective than the blended composite PSGG-Sh coating
Sweet cherry:composition, postharvest preservation, processing and trends for its future use
Background Sweet cherries (Prunus avium L.) are a nutritious fruit which are rich in polyphenols and have high antioxidant potential. Most sweet cherries are consumed fresh and a small proportion of the total sweet cherries production is value added to make processed food products. Sweet cherries are highly perishable fruit with a short harvest season, therefore extensive preservation and processing methods have been developed for the extension of their shelf-life and distribution of their products. Scope and Approach In this review, the main physicochemical properties of sweet cherries, as well as bioactive components and their determination methods are described. The study emphasises the recent progress of postharvest technology, such as controlled/modified atmosphere storage, edible coatings, irradiation, and biological control agents, to maintain sweet cherries for the fresh market. Valorisations of second-grade sweet cherries, as well as trends for the diversification of cherry products for future studies are also discussed. Key Findings and Conclusions Sweet cherry fruit have a short harvest period and marketing window. The major loss in quality after harvest include moisture loss, softening, decay and stem browning. Without compromising their eating quality, the extension in fruit quality and shelf-life for sweet cherries is feasible by means of combination of good handling practice and applications of appropriate postharvest technology. With the drive of health-food sector, the potential of using second class cherries including cherry stems as a source of bioactive compound extraction is high, as cherry fruit is well-known for being rich in health-promoting components
Characterization of pea starch-guar gum biocomposite edible films enriched by natural antimicrobial agents for active food packaging
Antimicrobial activity of epigallocatechin-3-gallate (EGCG) and two native Australian plants blueberry ash (BBA) fruit and macadamia (MAC) skin extracts against nine pathogenic and spoilage bacteria and seven strains of fungi, using an agar well diffusion assay were investigated. The minimum inhibitory concentrations (MIC) of these compounds were calculated using 96-well microtiter plates method. Finally, active antimicrobial packaging films were prepared by incorporation of EGCG, BBA and MAC extracts at 1-, 2-, 3-, and 4-fold of their correspondence MIC values into edible films based on pea starch and guar gum (PSGG). The antimicrobial activity of films was investigated against target microorganisms by agar disc diffusion technique and quantified using the viable cell count assay. Among the test microorganisms, Salmonella typhimurium and Rhizopus sp. were the most resistance to active films. Films containing EGCG showed the highest activity against all test strains. As the concentration of compounds increased higher than 2 × MIC, the mechanical characteristics of the films were affected considerably. The results indicated that EGCG-PSGG, BBA-PSGG and MAC-PSGG films can be used as active food packaging systems for preserving food safety and prolonging the shelf-life of the packaged food
Ultrasound increases the aqueous extraction of phenolic compounds with high antioxidant activity from olive pomace
Olive pomace is a waste produced by the olive oil industry in massive quantities each year. Disposal of olive pomace is difficult due to high concentrations of phenolic compounds, which is an environmental concern. However, phenolic compounds have applications in the health industry. Therefore, extraction of phenolic compounds from olive pomace has the potential to remove an environmentally hazardous portion of pomace while creating an additional source of income for farmers and producers. Using advanced technologies including Ultrasound Assisted Extraction (UAE), combined with water as an extraction solvent, has recently gained popularity. The present study outlines the optimal UAE conditions for the extraction of phenolic compounds with high antioxidant activity from olive pomace. Optimal conditions were developed using RSM for parameters power, time and sample-to-solvent ratio. Total phenolic compounds determined by Folin Ciocalteu method and total major bioactive compounds determined by HPLC as well as antioxidant capacity (DPPH and CUPRAC) were investigated. The optimal conditions for the extraction of phenolic compounds with high antioxidant activity were 2 g of dried pomace/100 mL of water at 250 W power for 75 min. UAE improved the extraction efficiency of water and yielded extracts with high levels of phenolic compounds and strong antioxidant activity
- …