2,295 research outputs found
The texture and taste of food in the brain
Oral texture is represented in the brain areas that represent taste, including the primary taste cortex, the orbitofrontal cortex, and the amygdala. Some neurons represent viscosity, and their responses correlate with the subjective thickness of a food. Other neurons represent fat in the mouth, and represent it by its texture not by its chemical composition, in that they also respond to paraffin oil and silicone in the mouth. The discovery has been made that these fat-responsive neurons encode the coefficient of sliding friction and not viscosity, and this opens the way for the development of new foods with the pleasant mouth feel of fat and with health-promoting designed nutritional properties. A few other neurons respond to free fatty acids (such as linoleic acid), do not respond to fat in the mouth, and may contribute to some 'off' tastes in the mouth. Some other neurons code for astringency. Others neurons respond to other aspects of texture such as the crisp fresh texture of a slice of apple vs the same apple after blending. Different neurons respond to different combinations of these texture properties, oral temperature, taste, and in the orbitofrontal cortex to olfactory and visual properties of food. In the orbitofrontal cortex, the pleasantness and reward value of the food is represented, but the primary taste cortex represents taste and texture independently of value. These discoveries were made in macaques that have similar cortical brain areas for taste and texture processing as humans, and complementary human functional neuroimaging studies are described. This article is protected by copyright. All rights reserved. [Abstract copyright: This article is protected by copyright. All rights reserved.
A common neural scale for the subjective pleasantness of different primary rewards.
When an economic decision is taken, it is between goals with different values, and the values must be on the same scale. Here, we used functional MRI to search for a brain region that represents the subjective pleasantness of two different rewards on the same neural scale. We found activity in the ventral prefrontal cortex that correlated with the subjective pleasantness of two fundamentally different rewards, taste in the mouth and warmth on the hand. The evidence came from two different investigations, a between-group comparison of two independent fMRI studies, and from a within-subject study. In the latter, we showed that neural activity in the same voxels in the ventral prefrontal cortex correlated with the subjective pleasantness of the different rewards. Moreover, the slope and intercept for the regression lines describing the relationship between activations and subjective pleasantness were highly similar for the different rewards. We also provide evidence that the activations did not simply represent multisensory integration or the salience of the rewards. The findings demonstrate the existence of a specific region in the human brain where neural activity scales with the subjective pleasantness of qualitatively different primary rewards. This suggests a principle of brain processing of importance in reward valuation and decision-making
Representational capacity of a set of independent neurons
The capacity with which a system of independent neuron-like units represents
a given set of stimuli is studied by calculating the mutual information between
the stimuli and the neural responses. Both discrete noiseless and continuous
noisy neurons are analyzed. In both cases, the information grows monotonically
with the number of neurons considered. Under the assumption that neurons are
independent, the mutual information rises linearly from zero, and approaches
exponentially its maximum value. We find the dependence of the initial slope on
the number of stimuli and on the sparseness of the representation.Comment: 19 pages, 6 figures, Phys. Rev. E, vol 63, 11910 - 11924 (2000
Investigation of additives for improvement of adhesive and elastomer performance Final report
Improvement additives for adhesive and elastomer performanc
Neural systems underlying decisions about affective odors.
Decision making about affective value may occur after the reward value of a stimulus is represented and may involve different brain areas to those involved in decision-making about the physical properties of stimuli, such as intensity. In an fMRI study, we delivered two odors separated by a delay, with instructions on different trials to decide which odor was more pleasant or more intense or to rate the pleasantness and intensity of the second odor without making a decision. The fMRI signals in the medial pFC area 10 and in regions to which it projects, including the ACC and insula, were higher when decisions were being made compared with ratings, implicating these regions in decision-making. Decision-making about affective value was related to larger signals in the dorsal part of medial area 10 and the agranular insula, whereas decisions about intensity were related to larger activations in the dorsolateral pFC, ventral premotor cortex, and anterior insula. For comparison, the mid-OFC had activations related not to decision making but to subjective pleasantness ratings, providing a continuous representation of affective value. In contrast, areas such as medial area 10 and the ACC are implicated in reaching a decision in which a binary outcome is produced
Reductions in entrée energy density increase children\u27s vegetable intake and reduce energy intake
The energy density (ED; kcal/g) of an entrée influences children\u27s energy intake (EI), but the effect of simultaneously changing both ED and portion size of an entrée on preschool children\u27s EI is unknown. In this within-subject crossover study, 3- to 5-year-old children (30 boys, 31 girls) in a daycare facility were served a test lunch once/week for 4 weeks. The amount and type of vegetables and cheeses incorporated into the sauce of a pasta entrée were manipulated to create two versions that varied in ED by 25% (1.6 or 1.2 kcal/g). Across the weeks, each version of the entrée was served to the children in each of two portion sizes (400 or 300 g). Lunch, consumed ad libitum, also included carrots, applesauce, and milk. Decreasing ED of the entrée by 25% significantly (P < 0.0001) reduced children\u27s EI of the entrée by 25% (63.1 8.3 kcal) and EI at lunch by 17% (60.7 8.9 kcal). Increasing the proportion of vegetables in the pasta entrée increased children\u27s vegetable intake at lunch by half of a serving of vegetables (P < 0.01). Decreasing portion size of the entrée by 25% did not significantly affect children\u27s total food intake or EI at lunch. Therefore, reducing the ED of a lunch entrée resulted in a reduction in children\u27s EI from the entrée and from the meal in both portion size conditions. Decreasing ED by incorporating more vegetables into recipes is an effective way of reducing children\u27s EI while increasing their vegetable intake.<br /
Cortical free association dynamics: distinct phases of a latching network
A Potts associative memory network has been proposed as a simplified model of
macroscopic cortical dynamics, in which each Potts unit stands for a patch of
cortex, which can be activated in one of S local attractor states. The internal
neuronal dynamics of the patch is not described by the model, rather it is
subsumed into an effective description in terms of graded Potts units, with
adaptation effects both specific to each attractor state and generic to the
patch. If each unit, or patch, receives effective (tensor) connections from C
other units, the network has been shown to be able to store a large number p of
global patterns, or network attractors, each with a fraction a of the units
active, where the critical load p_c scales roughly like p_c ~ (C S^2)/(a
ln(1/a)) (if the patterns are randomly correlated). Interestingly, after
retrieving an externally cued attractor, the network can continue jumping, or
latching, from attractor to attractor, driven by adaptation effects. The
occurrence and duration of latching dynamics is found through simulations to
depend critically on the strength of local attractor states, expressed in the
Potts model by a parameter w. Here we describe with simulations and then
analytically the boundaries between distinct phases of no latching, of
transient and sustained latching, deriving a phase diagram in the plane w-T,
where T parametrizes thermal noise effects. Implications for real cortical
dynamics are briefly reviewed in the conclusions
Effective connectivity in autism
The aim was to go beyond functional connectivity, by measuring in the first large-scale study differences in effective, that is directed, connectivity between brain areas in autism compared to controls. Resting-state functional magnetic resonance imaging was analyzed from the Autism Brain Imaging Data Exchange (ABIDE) data set in 394 people with autism spectrum disorder and 473 controls, and effective connectivity (EC) was measured between 94 brain areas. First, in autism, the middle temporal gyrus and other temporal areas had lower effective connectivities to the precuneus and cuneus, and these were correlated with the Autism Diagnostic Observational Schedule total, communication, and social scores. This lower EC from areas implicated in face expression analysis and theory of mind to the precuneus and cuneus implicated in the sense of self may relate to the poor understanding of the implications of face expression inputs for oneself in autism, and to the reduced theory of mind. Second, the hippocampus and amygdala had higher EC to the middle temporal gyrus in autism, and these are thought to be back projections based on anatomical evidence and are weaker than in the other direction. This may be related to increased retrieval of recent and emotional memories in autism. Third, some prefrontal cortex areas had higher EC with each other and with the precuneus and cuneus. Fourth, there was decreased EC from the temporal pole to the ventromedial prefrontal cortex, and there was evidence for lower activity in the ventromedial prefrontal cortex, a brain area implicated in emotion-related decision-making. Autism Res 2019, 00: 1-13. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: To understand autism spectrum disorders better, it may be helpful to understand whether brain systems cause effects on each other differently in people with autism. In this first large-scale neuroimaging investigation of effective connectivity in people with autism, it is shown that parts of the temporal lobe involved in facial expression identification and theory of mind have weaker effects on the precuneus and cuneus implicated in the sense of self. This may relate to the poor understanding of the implications of face expression inputs for oneself in autism, and to the reduced theory of mind. [Abstract copyright: © 2019 International Society for Autism Research, Wiley Periodicals, Inc.
- …