16,445 research outputs found
Regular black holes in gravity
In this work, we study the possibility of generalizing solutions of regular
black holes with an electric charge, constructed in general relativity, for the
theory, where is the Gauss-Bonnet invariant. This type of solution
arises due to the coupling between gravitational theory and nonlinear
electrodynamics. We construct the formalism in terms of a mass function and it
results in different gravitational and electromagnetic theories for which mass
function. The electric field of these solutions are always regular and the
strong energy condition is violated in some region inside the event horizon.
For some solutions, we get an analytical form for the function. Imposing
the limit of some constant going to zero in the function we recovered
the linear case, making the general relativity a particular case.Comment: 22 pages, 25 figures.Version published in EPJ
On the -Dirac Oscillator revisited
This Letter is based on the -Dirac equation, derived from the
-Poincar\'{e}-Hopf algebra. It is shown that the -Dirac
equation preserves parity while breaks charge conjugation and time reversal
symmetries. Introducing the Dirac oscillator prescription,
, in the -Dirac
equation, one obtains the -Dirac oscillator. Using a decomposition in
terms of spin angular functions, one achieves the deformed radial equations,
with the associated deformed energy eigenvalues and eigenfunctions. The
deformation parameter breaks the infinite degeneracy of the Dirac oscillator.
In the case where , one recovers the energy eigenvalues and
eigenfunctions of the Dirac oscillator.Comment: 5 pages, no figures, accepted for publication in Physics Letters
Liquid mixtures involving fluorinated alcohols: The equation of state (p, r, T, x) of (Ethanol + Trifluoroethanol) Experimental and Simulation
Liquid mixtures involving fluorinated alcohols:
The equation of state (p, r, T, x) of (Ethanol + Trifluoroethanol)
Experimental and Simulation
Pedro Duartea, Djêide Rodriguesa, Marcelo Silvaa, Pedro Morgadoa,
LuÃs Martinsa,b and Eduardo J. M. Filipea*
aCentro de QuÃmica Estrutural, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
bCentro de QuÃmica de Évora, Universidade de Évora, 7000-671 Évora, Portugal
Fluorinated alcohols are substances with unique properties and high technological value in the pharmaceutical and chemical industries. Trifluoroethanol (TFE), in particular, displays a number of unusual properties as a solvent. For example, it dissolves nylon at room temperature and is effectively used as solvent in bioengineering. The presence of the three fluorines atoms gives the alcohol a high ionization constant, strong hydrogen bonding capability and stability at high temperatures.
In the pharmaceutical industry, TFE finds use as the major raw material for the production of inhalation anesthetics. Mixtures of TFE and water (known as Fluorinols®) are used as working fluids for Rankine cycle heat engines for terrestrial and space applications, as a result of a unique combination of physical and thermodynamic properties such as high thermal efficiency and excellent turbine expansion characteristics.
Environmentally, TFE is a CFC substitute with an acceptable short lifetime and with small ozone depletion potential. Additionally, TFE is known to induce conformational changes in proteins and it is used as a co-solvent to analyze structural features of partially folded states.
The (ethanol + TFE) system displays an interesting and peculiar behaviour, combining a negative azeotrope with high positive excess volumes.
In this work, liquid mixtures of (ethanol + TFE) were investigated. The densities of the mixtures were measured as a function of composition between 278K and 338K and at pressures up to 700 bar. The corresponding excess volumes as a function of temperature and pressure, the isothermal compressibilities and thermal expansivities were calculated from the experimental results. The mixtures are highly non-ideal with excess volumes ranging from 0.8 - 1.0 cm3mol-1.
Finally, molecular dynamic simulations were performed to model and interpret the experimental results. The Trappe force field was used to simulate the (TFE + ethanol) mixtures and calculate the corresponding excess volumes. The simulation results are able to reproduce the correct sign and order of magnitude of the experimental VE without fitting to the experimental data. Furthermore, the simulations suggest the presence of a particular type of hydrogen bridge between ethanol and TFE, that can help to rationalize the experimental results
Family Farming and Biodiesel: rural development in Central-Western Brazil
A produção de biodiesel no Brasil iniciou-se em 2005. O Programa Nacional de Produção e Uso do Biodiesel (PNPB) objetivou integrar agricultores familiares como fornecedores de matéria-prima para as indústrias de biodiesel, reduzindo assim a pobreza e promovendo o desenvolvimento rural. A integração de agricultores familiares foi revista devido a predominância da soja na cadeia de produção do biodiesel. Este estudo teve como objetivo comparar os mecanismos institucionais desenvolvidos por agricultores familiares e agentes econômicos em Mato Grosso a partir de dois diferentes estudos que ocorreram entre 2011 e 2013. O contexto teórico da Nova Economia Institucional foi necessário para identificar os mecanismos contratuais e de mercado desenvolvidos – arrendamento de maquinário, adicional de preço, fontes de financiamento e os pacotes tecnológicos – para aumentar a renda familiar e contribuir para o sucesso do PNPB em Mato Grosso. A presença destes mecanismos em diferentes regiões indica a difusão do conhecimento na rede produtiva da soja
Avaliação da aptidão agrÃcola das terras do Campo Experimental da Embrapa Acre.
bitstream/item/49490/1/Boletim-PD-34-AMAZ-ORIENTAL.pd
- …