6,034 research outputs found
A giant ring-like structure at 0.78<z<0.86 displayed by GRBs
According to the cosmological principle, Universal large-scale structure is
homogeneous and isotropic. The observable Universe, however, shows complex
structures even on very large scales. The recent discoveries of structures
significantly exceeding the transition scale of 370 Mpc pose a challenge to the
cosmological principle.
We report here the discovery of the largest regular formation in the
observable Universe; a ring with a diameter of 1720 Mpc, displayed by 9 gamma
ray bursts (GRBs), exceeding by a factor of five the transition scale to the
homogeneous and isotropic distribution. The ring has a major diameter of
and a minor diameter of at a distance of 2770 Mpc in the 0.78<z<0.86
redshift range, with a probability of of being the result of
a random fluctuation in the GRB count rate.
Evidence suggests that this feature is the projection of a shell onto the
plane of the sky. Voids and string-like formations are common outcomes of
large-scale structure. However, these structures have maximum sizes of 150 Mpc,
which are an order of magnitude smaller than the observed GRB ring diameter.
Evidence in support of the shell interpretation requires that temporal
information of the transient GRBs be included in the analysis.
This ring-shaped feature is large enough to contradict the cosmological
principle. The physical mechanism responsible for causing it is unknown.Comment: Accepted for publication in MNRAS, 13 pages, 8 figures and 4 table
The Evolving Role of Opioid Treatment in Chronic Pain Management
Opioids for chronic pain management have become increasingly controversial, yet many patients continue to be treated with high doses for prolonged periods of time. The miscon‐ ception between patients and providers alike is that these drugs can be taken without conse‐ quences. This liberalized thinking is far from the clinical practice of just two decades ago
Mechanics of multidimensional isolated horizons
Recently a multidimensional generalization of Isolated Horizon framework has
been proposed by Lewandowski and Pawlowski (gr-qc/0410146). Therein the
geometric description was easily generalized to higher dimensions and the
structure of the constraints induced by the Einstein equations was analyzed. In
particular, the geometric version of the zeroth law of the black hole
thermodynamics was proved. In this work we show how the IH mechanics can be
formulated in a dimension--independent fashion and derive the first law of BH
thermodynamics for arbitrary dimensional IH. We also propose a definition of
energy for non--rotating horizons.Comment: 25 pages, 4 figures (eps), last sections revised, acknowledgements
and a section about the gauge invariance of introduced quantities added;
typos corrected, footnote 4 on page 9 adde
Distribution of Maximal Luminosity of Galaxies in the Sloan Digital Sky Survey
Extreme value statistics (EVS) is applied to the distribution of galaxy luminosities in the Sloan Digital Sky Survey (SDSS). We analyze the DR8 Main Galaxy Sample (MGS), as well as the Luminous Red Galaxies (LRG). Maximal luminosities are sampled from batches consisting of elongated pencil beams in the radial direction of sight. For the MGS, results suggest a small and positive tail index , effectively ruling out the possibility of having a finite maximum cutoff luminosity, and implying that the luminosity distribution function may decay as a power law at the high luminosity end. Assuming, however, , a non-parametric comparison of the maximal luminosities with the Fisher-Tippett-Gumbel distribution (limit distribution for variables distributed by the Schechter fit) indicates a good agreement provided uncertainties arising both from the finite batch size and from the batch size distribution are accounted for. For a volume limited sample of LRGs, results show that they can be described as being the extremes of a luminosity distribution with an exponentially decaying tail, provided the uncertainties related to batch-size distribution are taken care of
Quasi-local rotating black holes in higher dimension: geometry
With a help of a generalized Raychaudhuri equation non-expanding null
surfaces are studied in arbitrarily dimensional case. The definition and basic
properties of non-expanding and isolated horizons known in the literature in
the 4 and 3 dimensional cases are generalized. A local description of horizon's
geometry is provided. The Zeroth Law of black hole thermodynamics is derived.
The constraints have a similar structure to that of the 4 dimensional spacetime
case. The geometry of a vacuum isolated horizon is determined by the induced
metric and the rotation 1-form potential, local generalizations of the area and
the angular momentum typically used in the stationary black hole solutions
case.Comment: 32 pages, RevTex
Experimental Design for Flexible Acoustic Transducer for the Violin
This paper explores an experimental design for a transducer which is
able to conform to surfaces with curves in multiple directions. The purpose of
this is to create a flexible transducer which reduces the distortion attributed and
created by the lack of uniformity between a rigid flat transducer and a curved
surface. Using an array of magnets arranged and a loose weaved coil, it is possible
to construct a coil which can conform to such a surface and produce motion,
like a classic transducer, creating sound using the surface like a speaker cone. In
this musical application, this design was tested using a violin body as the curved
surface. The resultant prototype may serve as a viable alternative to rigid transducer
technology with further improvement and refinement
Hyperboloidal slices for the wave equation of Kerr-Schild metrics and numerical applications
We present new results from two open source codes, using finite differencing
and pseudo-spectral methods for the wave equations in (3+1) dimensions. We use
a hyperboloidal transformation which allows direct access to null infinity and
simplifies the control over characteristic speeds on Kerr-Schild backgrounds.
We show that this method is ideal for attaching hyperboloidal slices or for
adapting the numerical resolution in certain spacetime regions. As an example
application, we study late-time Kerr tails of sub-dominant modes and obtain new
insight into the splitting of decay rates. The involved conformal wave equation
is freed of formally singular terms whose numerical evaluation might be
problematically close to future null infinity.Comment: 15 pages, 12 figure
Seeking for toroidal event horizons from initially stationary BH configurations
We construct and evolve non-rotating vacuum initial data with a ring
singularity, based on a simple extension of the standard Brill-Lindquist
multiple black-hole initial data, and search for event horizons with spatial
slices that are toroidal when the ring radius is sufficiently large. While
evolutions of the ring singularity are not numerically feasible for large
radii, we find some evidence, based on configurations of multiple BHs arranged
in a ring, that this configuration leads to singular limit where the horizon
width has zero size, possibly indicating the presence of a naked singularity,
when the radius of the ring is sufficiently large. This is in agreement with
previous studies that have found that there is no apparent horizon surrounding
the ring singularity when the ring's radius is larger than about twice its
mass.Comment: 24 pages, 14 figure
- …