168 research outputs found

    Persistent trigeminal artery as a rare cause of ischaemic lesion and migraine-like headache

    Get PDF
    The persistent trigeminal artery (PTA) is a rare remnant of the embryonic intracranial circulatory system that forms a carotid-vertebrobasilar anastomosis. In most cases PTA does not have clear clinical implications. However, some authors report the association of PTA occurrence with vertigo, dizziness and nerve palsy, resulting in diplopia, strabismus or trigeminal neuralgia in patients. In rare cases it may also be related to posterior cerebral circulation strokes. This work reports the case of a female patient who presented with migraine-like headache and an ischaemic lesion in the left temporal lobe in association with PTA

    CIBERSORT analysis of TCGA and METABRIC identifies subgroups with better outcomes in triple negative breast cancer

    Get PDF
    Studies have shown that the presence of tumor infiltrating lymphocytes (TILs) in Triple Negative Breast Cancer (TNBC) is associated with better prognosis. However, the molecular mechanisms underlying these immune cell differences are not well delineated. In this study, analysis of hematoxylin and eosin images from The Cancer Genome Atlas (TCGA) breast cancer cohort failed to show a prognostic benefit of TILs in TNBC, whereas CIBERSORT analysis, which quantifies the proportion of each immune cell type, demonstrated improved overall survival in TCGA TNBC samples with increased CD8 T cells or CD8 plus CD4 memory activated T cells and in Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) TNBC samples with increased gamma delta T cells. Twenty-five genes showed mutational frequency differences between the TCGA high and low T cell groups, and many play important roles in inflammation or immune evasion (ATG2B, HIST1H2BC, PKD1, PIKFYVE, TLR3, NOTCH3, GOLGB1, CREBBP). Identification of these mutations suggests novel mechanisms by which the cancer cells attract immune cells and by which they evade or dampen the immune system during the cancer immunoediting process. This study suggests that integration of mutations with CIBERSORT analysis could provide better prediction of outcomes and novel therapeutic targets in TNBC cases

    Protein kinase Cι is required for Ras transformation and colon carcinogenesis in vivo

    Get PDF
    Protein kinase C ι (PKCι) has been implicated in Ras signaling, however, a role for PKCι in oncogenic Ras-mediated transformation has not been established. Here, we show that PKCι is a critical downstream effector of oncogenic Ras in the colonic epithelium. Transgenic mice expressing constitutively active PKCι in the colon are highly susceptible to carcinogen-induced colon carcinogenesis, whereas mice expressing kinase-deficient PKCι (kdPKCι) are resistant to both carcinogen- and oncogenic Ras-mediated carcinogenesis. Expression of kdPKCι in Ras-transformed rat intestinal epithelial cells blocks oncogenic Ras-mediated activation of Rac1, cellular invasion, and anchorage-independent growth. Constitutively active Rac1 (RacV12) restores invasiveness and anchorage-independent growth in Ras-transformed rat intestinal epithelial cells expressing kdPKCι. Our data demonstrate that PKCι is required for oncogenic Ras- and carcinogen-mediated colon carcinogenesis in vivo and define a procarcinogenic signaling axis consisting of Ras, PKCι, and Rac1

    Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neurotensin has been found to promote colon carcinogenesis in rats and mice, and proliferation of human colon carcinoma cell lines, but the mechanisms involved are not clear. We have examined signalling pathways activated by neurotensin in colorectal and pancreatic carcinoma cells.</p> <p>Methods</p> <p>Colon carcinoma cell lines HCT116 and HT29 and pancreatic adenocarcinoma cell line Panc-1 were cultured and stimulated with neurotensin or epidermal growth factor (EGF). DNA synthesis was determined by incorporation of radiolabelled thymidine into DNA. Levels and phosphorylation of proteins in signalling pathways were assessed by Western blotting.</p> <p>Results</p> <p>Neurotensin stimulated the phosphorylation of both extracellular signal-regulated kinase (ERK) and Akt in all three cell lines, but apparently did so through different pathways. In Panc-1 cells, neurotensin-induced phosphorylation of ERK, but not Akt, was dependent on protein kinase C (PKC), whereas an inhibitor of the β-isoform of phosphoinositide 3-kinase (PI3K), TGX221, abolished neurotensin-induced Akt phosphorylation in these cells, and there was no evidence of EGF receptor (EGFR) transactivation. In HT29 cells, in contrast, the EGFR tyrosine kinase inhibitor gefitinib blocked neurotensin-stimulated phosphorylation of both ERK and Akt, indicating transactivation of EGFR, independently of PKC. In HCT116 cells, neurotensin induced both a PKC-dependent phosphorylation of ERK and a metalloproteinase-mediated transactivation of EGFR that was associated with a gefitinib-sensitive phosphorylation of the downstream adaptor protein Shc. The activation of Akt was also inhibited by gefitinib, but only partly, suggesting a mechanism in addition to EGFR transactivation. Inhibition of PKC blocked neurotensin-induced DNA synthesis in HCT116 cells.</p> <p>Conclusions</p> <p>While acting predominantly through PKC in Panc-1 cells and via EGFR transactivation in HT29 cells, neurotensin used both these pathways in HCT116 cells. In these cells, neurotensin-induced activation of ERK and stimulation of DNA synthesis was PKC-dependent, whereas activation of the PI3K/Akt pathway was mediated by stimulation of metalloproteinases and subsequent transactivation of the EGFR. Thus, the data show that the signalling mechanisms mediating the effects of neurotensin involve multiple pathways and are cell-dependent.</p
    • …
    corecore