153 research outputs found

    Measuring the Deployment Hiccups of DNSSEC

    Get PDF
    On May 5, 2010 the last step of the DNSSEC deployment on the 13 root servers was completed. DNSSEC is a set of security extensions on the traditional DNS protocol, that aim in preventing attacks based on the authenticity and integrity of the messages. Although the transition was completed without major faults, it is not clear whether problems of smaller scale occurred. In this paper we try to quantify the effects of that transition, using as many vantage points as possible. In order to achieve that, we deployed a distributed DNS monitoring infrastructure over the PlanetLab and gathered periodic DNS lookups, performed from each of the roughly 300 nodes, during the DNSSEC deployment on the last root name server. In addition, in order to broaden our view, we also collected data using the Tor anonymity network. After analyzing all the gathered data, we observed that around 4% of the monitored networks had an interesting DNS query failure pattern, which, to the best of our knowledge, was due to the transition

    Extinction of an instrumental response: a cognitive behavioral assay in Fmr1 knockout mice

    Get PDF
    Fragile X (FX) is the most common genetic cause of intellectual disability and autism. Previous studies have shown that partial inhibition of metabotropic glutamate receptor signaling is sufficient to correct behavioral phenotypes in a mouse model of FX, including audiogenic seizures, open-field hyperactivity and social behavior. These phenotypes model well the epilepsy (15%), hyperactivity (20%) and autism (30%) that are comorbid with FX in human patients. Identifying reliable and robust mouse phenotypes to model cognitive impairments is critical considering the 90% comorbidity of FX and intellectual disability. Recent work characterized a five-choice visuospatial discrimination assay testing cognitive flexibility, in which FX model mice show impairments associated with decreases in synaptic proteins in prefrontal cortex (PFC). In this study, we sought to determine whether instrumental extinction, another process requiring PFC, is altered in FX model mice, and whether downregulation of metabotropic glutamate receptor signaling pathways is sufficient to correct both visuospatial discrimination and extinction phenotypes. We report that instrumental extinction is consistently exaggerated in FX model mice. However, neither the extinction phenotype nor the visuospatial discrimination phenotype is corrected by approaches targeting metabotropic glutamate receptor signaling. This work describes a novel behavioral extinction assay to model impaired cognition in mouse models of neurodevelopmental disorders, provides evidence that extinction is exaggerated in the FX mouse model and suggests possible limitations of metabotropic glutamate receptor-based pharmacotherapy.FRAXA Research FoundationAutism Science FoundationNational Institute of Mental Health (U.S.) (Training Grant 2T32MH074249)Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (Grant 5RO1HD046903

    An Architecture for Multi-User Software Development Environments

    Get PDF
    We present an architecture for multi-user software development environments, covering general, process-centered and rule-based MUSDEs. Our architecture is founded on componentization, with particular concern for the capability to replace the synchronization component - to allow experimentation with novel concurrency control mechanisms - with minimal effects on other components while still supporting integration. The architecture has been implemented in the MARVEL SD

    Enhanced hippocampal LTP but normal NMDA receptor and AMPA receptor function in a rat model of CDKL5 deficiency disorder

    Get PDF
    Background: Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) cause a severe neurological disorder characterised by early-onset epileptic seizures, autism and intellectual disability (ID). Impaired hippocampal function has been implicated in other models of monogenic forms of autism spectrum disorders and ID and is often linked to epilepsy and behavioural abnormalities. Many individuals with CDKL5 deficiency disorder (CDD) have null mutations and complete loss of CDKL5 protein, therefore in the current study we used a Cdkl5 βˆ’/y rat model to elucidate the impact of CDKL5 loss on cellular excitability and synaptic function of CA1 pyramidal cells (PCs). We hypothesised abnormal pre and/or post synaptic function and plasticity would be observed in the hippocampus of Cdkl5 βˆ’/y rats. Methods: To allow cross-species comparisons of phenotypes associated with the loss of CDKL5, we generated a loss of function mutation in exon 8 of the rat Cdkl5 gene and assessed the impact of the loss of CDLK5 using a combination of extracellular and whole-cell electrophysiological recordings, biochemistry, and histology. Results: Our results indicate that CA1 hippocampal long-term potentiation (LTP) is enhanced in slices prepared from juvenile, but not adult, Cdkl5 βˆ’/y rats. Enhanced LTP does not result from changes in NMDA receptor function or subunit expression as these remain unaltered throughout development. Furthermore, Ca 2+ permeable AMPA receptor mediated currents are unchanged in Cdkl5 βˆ’/y rats. We observe reduced mEPSC frequency accompanied by increased spine density in basal dendrites of CA1 PCs, however we find no evidence supporting an increase in silent synapses when assessed using a minimal stimulation protocol in slices. Additionally, we found no change in paired-pulse ratio, consistent with normal release probability at Schaffer collateral to CA1 PC synapses. Conclusions: Our data indicate a role for CDKL5 in hippocampal synaptic function and raise the possibility that altered intracellular signalling rather than synaptic deficits contribute to the altered plasticity. Limitations: This study has focussed on the electrophysiological and anatomical properties of hippocampal CA1 PCs across early postnatal development. Studies involving other brain regions, older animals and behavioural phenotypes associated with the loss of CDKL5 are needed to understand the pathophysiology of CDD.</p

    Activation of mGluR5 Induces Rapid and Long-Lasting Protein Kinase D Phosphorylation in Hippocampal Neurons

    Get PDF
    Metabotropic glutamate receptors (mGluRs), including mGluR5, play a central role in regulating the strength and plasticity of synaptic connections in the brain. However, the signaling pathways that connect mGluRs to their downstream effectors are not yet fully understood. Here, we report that stimulation of mGluR5 in hippocampal cultures and slices results in phosphorylation of protein kinase D (PKD) at the autophosphorylation site Ser-916. This phosphorylation event occurs within 30 s of stimulation, persists for at least 24 h, and is dependent on activation of phospholipase C and protein kinase C. Our data suggest that activation of PKD may represent a novel signaling pathway linking mGluR5 to its downstream targets. These findings have important implications for the study of the molecular mechanisms underlying mGluR-dependent synaptic plasticity.Howard Hughes Medical InstituteFRAXA Research FoundationNational Institute of Mental Health (U.S.)Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.

    Enhanced hippocampal LTP but normal NMDA receptor and AMPA receptor function in a rat model of CDKL5 deficiency disorder

    Get PDF
    \ua9 The Author(s) 2024. Background: Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) cause a severe neurological disorder characterised by early-onset epileptic seizures, autism and intellectual disability (ID). Impaired hippocampal function has been implicated in other models of monogenic forms of autism spectrum disorders and ID and is often linked to epilepsy and behavioural abnormalities. Many individuals with CDKL5 deficiency disorder (CDD) have null mutations and complete loss of CDKL5 protein, therefore in the current study we used a Cdkl5βˆ’/y rat model to elucidate the impact of CDKL5 loss on cellular excitability and synaptic function of CA1 pyramidal cells (PCs). We hypothesised abnormal pre and/or post synaptic function and plasticity would be observed in the hippocampus of Cdkl5βˆ’/y rats. Methods: To allow cross-species comparisons of phenotypes associated with the loss of CDKL5, we generated a loss of function mutation in exon 8 of the rat Cdkl5 gene and assessed the impact of the loss of CDLK5 using a combination of extracellular and whole-cell electrophysiological recordings, biochemistry, and histology. Results: Our results indicate that CA1 hippocampal long-term potentiation (LTP) is enhanced in slices prepared from juvenile, but not adult, Cdkl5βˆ’/y rats. Enhanced LTP does not result from changes in NMDA receptor function or subunit expression as these remain unaltered throughout development. Furthermore, Ca2+ permeable AMPA receptor mediated currents are unchanged in Cdkl5βˆ’/y rats. We observe reduced mEPSC frequency accompanied by increased spine density in basal dendrites of CA1 PCs, however we find no evidence supporting an increase in silent synapses when assessed using a minimal stimulation protocol in slices. Additionally, we found no change in paired-pulse ratio, consistent with normal release probability at Schaffer collateral to CA1 PC synapses. Conclusions: Our data indicate a role for CDKL5 in hippocampal synaptic function and raise the possibility that altered intracellular signalling rather than synaptic deficits contribute to the altered plasticity. Limitations: This study has focussed on the electrophysiological and anatomical properties of hippocampal CA1 PCs across early postnatal development. Studies involving other brain regions, older animals and behavioural phenotypes associated with the loss of CDKL5 are needed to understand the pathophysiology of CDD
    • …
    corecore