995 research outputs found

    Intensification of precipitation extremes with warming in a cloud resolving model

    Get PDF
    A cloud-resolving model is used to investigate the effect of warming on high percentiles of precipitation (precipitation extremes) in the idealized setting of radiative-convective equilibrium. While this idealized setting does not allow for several factors that influence precipitation in the tropics, it does allow for an evaluation of the response of precipitation extremes to warming in simulations with resolved rather than parameterized convection. The methodology developed should also be applicable to less idealized simulations. Modeled precipitation extremes are found to increase in magnitude in response to an increase in sea surface temperature. A dry static energy budget is used to relate the changes in precipitation extremes to changes in atmospheric temperature, vertical velocity, and precipitation efficiency. To first order, the changes in precipitation extremes are captured by changes in the mean temperature structure of the atmosphere. Changes in vertical velocities play a secondary role and tend to weaken the strength of precipitation extremes, despite an intensification of updraft velocities in the upper troposphere. The influence of changes in condensate transports on precipitation extremes is quantified in terms of a precipitation efficiency; it does not change greatly with warming. Tropical precipitation extremes have previously been found to increase at a greater fractional rate than the amount of atmospheric water vapor in observations of present-day variability and in some climate model simulations with parameterized convection. But the fractional increases in precipitation extremes in the cloud-resolving simulations are comparable in magnitude to those in surface water vapor concentrations (owing to a partial cancellation between dynamical and thermodynamical changes), and are substantially less than the fractional increases in column water vapor.Texas Advanced Computing CenterNational Science Foundation (U.S.) (TeraGrid resources

    ALMA observations of TiO2_2 around VY Canis Majoris

    Full text link
    Titanium dioxide, TiO2_2, is a refractory species that could play a crucial role in the dust-condensation sequence around oxygen-rich evolved stars. To date, gas phase TiO2_2 has been detected only in the complex environment of the red supergiant VY CMa. We aim to constrain the distribution and excitation of TiO2_2 around VY CMa in order to clarify its role in dust formation. We analyse spectra and channel maps for TiO2_2 extracted from ALMA science verification data. We detect 15 transitions of TiO2_2, and spatially resolve the emission for the first time. The maps demonstrate a highly clumpy, anisotropic outflow in which the TiO2_2 emission likely traces gas exposed to the stellar radiation field. A roughly east-west oriented, accelerating bipolar-like structure is found, of which the blue component runs into and breaks up around a solid continuum component. A distinct tail to the south-west is seen for some transitions, consistent with features seen in the optical and near-infrared. We find that a significant fraction of TiO2_2 remains in the gas phase outside the dust-formation zone and suggest that this species might play only a minor role in the dust-condensation process around extreme oxygen-rich evolved stars like VY CMa.Comment: Accepted for publication in Astronomy & Astrophysics, 25 pages, 20 figure

    PRM33 TAKE TIME TO TRAIN: EVIDENCE TO SHOW THAT PATIENT TRAINING IN ELECTRONIC PATIENT REPORTED OUTCOMES IS BENEFICIAL

    Get PDF

    Recent Transits of the Super-Earth Exoplanet GJ 1214b

    Full text link
    We report recent ground-based photometry of the transiting super-Earth exoplanet GJ1214b at several wavelengths, including the infrared near 1.25 microns (J-band). We observed a J-band transit with the FLAMINGOS infrared imager and the 2.1-meter telescope on Kitt Peak, and we observed several optical transits using a 0.5-meter telescope on Kitt Peak and the 0.36-meter Universidad de Monterrey Observatory telescope. Our high-precision J-band observations exploit the brightness of the M-dwarf host star at this infrared wavelength as compared to the optical, as well as being significantly less affected by stellar activity and limb darkening. We fit the J-band transit to obtain an independent determination of the planetary and stellar radii. Our radius for the planet (2.61^+0.30_-0.11 Earth radii) is in excellent agreement with the discovery value reported by Charbonneau et al. based on optical data. We demonstrate that the planetary radius is insensitive to degeneracies in the fitting process. We use all of our observations to improve the transit ephemeris, finding P=1.5804043 +/- 0.0000005 days, and T0=2454964.94390 +/- 0.00006 BJD.Comment: Accepted for ApJ Letters, 7 pages, 3 Figures, 2 Table

    Orotracheal intubation in infants performed with a stylet versus without a stylet

    Get PDF
    Background: Neonatal endotracheal intubation is a common and potentially life-saving intervention. It is a mandatory skill for neonatal trainees, but one that is difficult to master and maintain. Intubation opportunities for trainees are decreasing and success rates are subsequently falling. Use of a stylet may aid intubation and improve success. However, the potential for associated harm must be considered. Objectives To compare the benefits and harms of neonatal orotracheal intubation with a stylet versus neonatal orotracheal intubation without a stylet. Search methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library; MEDLINE; Embase; the Cumulative Index to Nursing and Allied Health Literature (CINAHL), and previous reviews. We also searched cross-references, contacted expert informants, handsearched journals, and looked at conference proceedings. We searched clinical trials registries for current and recently completed trials. We conducted our most recent search in April 2017. Selection criteria All randomised, quasi–randomised, and cluster-randomised controlled trials comparing use versus non-use of a stylet in neonatal orotracheal intubation. Data collection and analysis: Two review authors independently assessed results of searches against predetermined criteria for inclusion, assessed risk of bias, and extracted data. We used the standard methods of the Cochrane Collaboration, as documented in the Cochrane Handbook for Systemic Reviews of Interventions, and of the Cochrane Neonatal Review Group. Main results: We included a single-centre non-blinded randomised controlled trial that reported a total of 302 intubation attempts in 232 infants. The median gestational age of enrolled infants was 29 weeks. Paediatric residents and fellows performed the intubations. We judged the study to be at low risk of bias overall. Investigators compared success rates of first-attempt intubation with and without use of a stylet and reported success rates as similar between stylet and no-stylet groups (57% and 53%) (P = 0.47). Success rates did not differ between groups in subgroup analyses by provider level of training and infant weight. Results showed no differences in secondary review outcomes, including duration of intubation, number of attempts, participant instability during the procedure, and local airway trauma. Only 25% of all intubations took less than 30 seconds to perform. Study authors did not report neonatal morbidity nor mortality. We considered the quality of evidence as low on GRADE analysis, given that we identified only one unblinded study. Authors' conclusions: Current available evidence suggests that use of a stylet during neonatal orotracheal intubation does not significantly improve the success rate among paediatric trainees. However, only one brand of stylet and one brand of endotracheal tube have been tested, and researchers performed all intubations on infants in a hospital setting. Therefore, our results cannot be generalised beyond these limitations

    21st Century Changes in U.S. Heavy Precipitation Frequency Based on Resolved Atmospheric Patterns

    Get PDF
    Gridded precipitation-gauge observations and global atmospheric reanalysis are combined to develop an analogue method for detecting the occurrence of heavy precipitation events based on the prevailing large-scale atmospheric conditions. Combinations of different atmospheric variables for circulation features (geopotential height and wind vector) and moisture plumes (surface specific humidity, column precipitable water, and precipitable water up to 500hPa) are examined to construct the analogue schemes for the winter (DJF) of the Pacific Coast California (PCCA) and the summer (JJA) of the Midwestern United States (MWST). The detection diagnostics of various analogue schemes are calibrated with 27-yr (1979–2005) and then validated with 9-yr (2006–2014) NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA). All of the analogue schemes are found to significantly improve upon MERRA precipitation in characterizing the number and interannual variations of observed heavy precipitation events in the MWST which is one of weakest regions for MERRA summer precipitation. When evaluated with the late 20th century simulations from an ensemble of climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5), all analogue schemes produce model medians of heavy precipitation frequency that are more consistent with observations and have smaller inter-model discrepancies when compared with the model-based precipitation. Further, the performances of analogue schemes with vector winds are comparable to those of geopotential height, and no analogue scheme with one of three water vapor content variables is clearly superior to another. Under two radiative forcing scenarios (Representative Concentration Pathways 4.5 and 8.5), the CMIP5-based analogue schemes produce a trend in the occurrence of heavy events through the 21st century consistent with the model-based precipitation, but with smaller inter-model disparity. The strongest reduction in the disparity of the results is seen for the RCP8.5 scenario. The median trends in DJF heavy precipitation frequency for PCCA are positive, but for JJA heavy event frequency over the MWST region, the median trends are slightly negative. Overall, the presented analyses highlight the potential of the analogue as a powerful diagnostic tool for model deficiencies and its complementarity to an evaluation that considers modeled precipitation alone to assess heavy precipitation frequency. The consistency found here between projections from analogues and model precipitation increases confidence in projected heavy precipitation frequency changes in a warming climate.This work was funded by the NASA Energy and Water Cycle Study Research Announcement (NNH07ZDA001N) and MacroSystems Biology Program Grant (NSF-AES EF#1137306) from the National Science Foundation
    • …
    corecore