293 research outputs found
High Efficiency Positron Accumulation for High-Precision Measurements
Positrons are accumulated within a Penning trap designed to make more precise
measurements of the positron and electron magnetic moments. The retractable
radioactive source used is weak enough to require no license for handling
radioactive material and the radiation dosage one meter from the source gives
an exposure several times smaller than the average radiation dose on the
earth's surface. The 100 mK trap is mechanically aligned with the 4.2 K
superconducting solenoid that produces a 6 tesla magnetic trapping field with a
direct mechanical coupling.Comment: 7 pages, 9 figure
Design and Assembly of a Large-aperture Nb3Sn Cos-theta Dipole Coil with Stress Management in Dipole Mirror Configuration
The stress-management cos-theta (SMCT) coil is a new concept which has been
proposed and is being developed at Fermilab in the framework of US Magnet
Development Program (US-MDP) for high-field and/or large-aperture accelerator
magnets based on low-temperature and high-temperature superconductors. The SMCT
structure is used to reduce large coil deformations under the Lorentz forces
and, thus, the excessively large strains and stresses in the coil. A
large-aperture Nb3Sn SMCT dipole coil has been developed and fabricated at
Fermilab to demonstrate and test the SMCT concept including coil design,
fabrication technology and performance. The first SMCT coil has been assembled
with 60-mm aperture Nb3Sn coil inside a dipole mirror configuration and will be
tested separately and in series with the insert coil. This paper summarizes the
large-aperture SMCT coil design and parameters and reports the coil fabrication
steps and its assembly in dipole mirror configuration
Development and Test of a Large-aperture Nb3Sn Cos-theta Dipole Coil with Stress Management
The design concept of the Electron Ion Collider (EIC), which is under
construction at BNL, considers adding a 2nd Interaction Region (IR) and
detector to the machine after completion of the present EIC project. Recent
progress with development and fabrication of large-aperture high-field magnets
based on the Nb3Sn technology for the HL-LHC makes this technology interesting
for the 2nd EIC IR. This paper summarizes the results of feasibility studies of
large-aperture high-field Nb3Sn dipoles and quadrupoles for the 2nd EIC IR.Comment: IPAC 2023. arXiv admin note: text overlap with arXiv:2304.1315
Recommended from our members
Development of Nb3Sn 11 T single aperture demonstrator dipole for LHC upgrades
The LHC collimation upgrade foresees additional collimators installed in dispersion suppressor regions. To obtain the necessary space for the collimators, a solution based on the substitution of LHC main dipoles for stronger dipoles is being considered. CERN and FNAL have started a joint program to demonstrate the feasibility of Nb{sub 3}Sn technology for this purpose. The goal of the first phase is the design and construction of a 2-m long single-aperture demonstrator magnet with a nominal field of 11 T at 11.85 kA with 20% margin. This paper describes the magnetic and mechanical design of the demonstrator magnet and summarizes its design parameters
Recommended from our members
Fabrication and test of 4m long Nb3Sn quadrupole coil made of RRP-114-127 strand
Fermilab is collaborating with LBNL and BNL (US-LARP collaboration) to develop a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. Several two-layer quadrupole models of the 1-meter and 3.4-meter length with 90mm apertures have been fabricated and tested by the US-LARP collaboration. High-Jc RRP-54/61 strand was used for nearly all models. Large flux jumps typical for this strand due to the large sub-element diameter limited magnet quench performance at temperatures below 2.5-3K. This paper summarizes the fabrication and test by Fermilab of LQM01, a long quadrupole coil test structure (quadrupole mirror) with the first 3.4m quadrupole coil made of more stable RRP-114/127 strand. The coil and structure are fully instrumented with voltage taps, full bridge strain gauges and strip heaters to monitor preload, thermal properties and quench behavior. Measurements during fabrication are reported, including preload during the yoke welding process. Testing is done at 4.5K, 1.9K and a range of intermediate temperatures. The test results include magnet strain and quench performance during training, as well as quench studies of current ramp rate and temperature dependence from 1.9K to 4.5K
- …