100 research outputs found
IL-17 induces an expanded range of downstream genes in reconstituted human epidermis model
Background: IL-17 is the defining cytokine of the Th17, Tc17, and γδ T cell populations that plays a critical role in mediating inflammation and autoimmunity. Psoriasis vulgaris is an inflammatory skin disease mediated by Th1 and Th17 cytokines with relevant contributions of IFN-γ, TNF-α, and IL-17. Despite the pivotal role IL-17 plays in psoriasis, and in contrast to the other key mediators involved in the psoriasis cytokine cascade that are capable of inducing broad effects on keratinocytes, IL-17 was demonstrated to regulate the expression of a limited number of genes in monolayer keratinocytes cultured in vitro. Methodology/Principal Findings: Given the clinical efficacy of anti-IL-17 agents is associated with an impressive reduction in a large set of inflammatory genes, we sought a full-thickness skin model that more closely resemble in vivo epidermal architecture. Using a reconstructed human epidermis (RHE), IL-17 was able to upregulate 419 gene probes and downregulate 216 gene probes. As possible explanation for the increased gene induction in the RHE model is that C/CAATenhancer- binding proteins (C/EBP) -β, the transcription factor regulating IL-17-responsive genes, is expressed preferentially in differentiated keratinocytes. Conclusions/Significance: The genes identified in IL-17-treated RHE are likely relevant to the IL-17 effects in psoriasis, since ixekizumab (anti-IL-17A agent) strongly suppressed the «RHE» genes in psoriasis patients treated in vivo with this IL-17 antagonist. © 2014 Chiricozzi et al
A Pilot Study of the Association of Tumor Necrosis Factor Alpha Polymorphisms with Psoriatic Arthritis in the Romanian Population
Tumor necrosis factor alpha (TNF-alpha) is an important pro-inflammatory cytokine implicated in the pathogenesis of psoriatic arthritis. We have performed a case-control association study of three TNF-alpha gene polymorphisms in a group of Romanian psoriatic arthritis patients versus ethnically matched controls. A second group of patients with undifferentiated spondyloarthritis was used in order to look for similarities in the genetic background of the two rheumatic disorders. The −857C/T polymorphism was associated with susceptibility to psoriatic arthritis in our population at the individual level (p = 0.03, OR 1.65, 95% CI 1.05–2.57) and in combined haplotypes with the −238G/A and −308G/A SNPs. Regarding the investigated polymorphisms and derived haplotypes, no potential association was found with the susceptibility to undifferentiated spondyloarthritis in Romanian patients
Th17 Cells and Activated Dendritic Cells Are Increased in Vitiligo Lesions
Vitiligo is a common skin disorder, characterized by progressive skin de-pigmentation due to the loss of cutaneous melanocytes. The exact cause of melanocyte loss remains unclear, but a large number of observations have pointed to the important role of cellular immunity in vitiligo pathogenesis.In this study, we characterized T cell and inflammation-related dermal dendritic cell (DC) subsets in pigmented non-lesional, leading edge and depigmented lesional vitiligo skin. By immunohistochemistry staining, we observed enhanced populations of CD11c+ myeloid dermal DCs and CD207+ Langerhans cells in leading edge vitiligo biopsies. DC-LAMP+ and CD1c+ sub-populations of dermal DCs expanded significantly in leading edge and lesional vitiligo skin. We also detected elevated tissue mRNA levels of IL-17A in leading edge skin biopsies of vitiligo patients, as well as IL-17A positive T cells by immunohistochemistry and immunofluorescence. Langerhans cells with activated inflammasomes were also noted in lesional vitiligo skin, along with increased IL-1ß mRNA, which suggest the potential of Langerhans cells to drive Th17 activation in vitiligo.These studies provided direct tissue evidence that implicates active Th17 cells in vitiligo skin lesions. We characterized new cellular immune elements, in the active margins of vitiligo lesions (e.g. populations of epidermal and dermal dendritic cells subsets), which could potentially drive the inflammatory responses
In Vivo Dioxin Favors Interleukin-22 Production by Human CD4+ T Cells in an Aryl Hydrocarbon Receptor (AhR)-Dependent Manner
The transcription factor aryl hydrocarbon receptor (AhR) mediates the effects of a group of chemicals known as dioxins, ubiquitously present in our environment. However, it is poorly known how the in vivo exposure to these chemicals affects in humans the adaptive immune response. We therefore assessed the functional phenotype of T cells from an individual who developed a severe cutaneous and systemic syndrome after having been exposed to an extremely high dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).T cells of the TCDD-exposed individual were studied for their capacity to produce cytokines in response to polyclonal and superantigenic stimulation, and for the expression of chemokine receptors involved in skin homing. The supernatants from T cells of the exposed individual contained a substantially increased amount of interleukin (IL)-22 but not of IL-17A, interferon (IFN)-γ or IL-10 when compared to nine healthy controls. In vitro experiments confirmed a direct, AhR-dependent, enhancing effect of TCDD on IL-22 production by CD4+ T cells. The increased production of IL-22 was not dependent on AhR occupancy by residual TCDD molecules, as demonstrated in competition experiments with the specific AhR antagonist CH-223191. In contrast, it was due to an increased frequency of IL-22 single producing cells accompanied by an increased percentage of cells expressing the skin-homing chemokine receptors CCR6 and CCR4, identified through a multiparameter flow cytometry approach. Of interest, the frequency of CD4+CD25(hi)FoxP3+ T regulatory cells was similar in the TCDD-exposed and healthy individuals.This case strongly supports the contention that human exposure to persistent AhR ligands in vivo induce a long-lasting effect on the human adaptive immune system and specifically polarizes CD4+ T cells to produce IL-22 and not other T cell cytokines with no effect on T regulatory cells
Report from the fourth international consensus meeting to harmonize core outcome measures for atopic eczema/dermatitis clinical trials (HOME initiative)
This article is a report of the fourth meeting of the Harmonising Outcome Measures for Eczema (HOME) initiative held in Malmö, Sweden on 23–24 April 2015 (HOME IV). The aim of the meeting was to achieve consensus over the preferred outcome instruments for measuring patient-reported symptoms and quality of life for the HOME core outcome set for atopic eczema (AE). Following presentations, which included data from systematic reviews, consensus discussions were held in a mixture of whole group and small group discussions. Small groups were allocated a priori to ensure representation of different stakeholders and countries. Decisions were voted on using electronic keypads. For the patient-reported symptoms, the group agreed by vote that itch, sleep loss, dryness, redness/inflamed skin and irritated skin were all considered essential aspects of AE symptoms. Many instruments for capturing patient-reported symptoms were discussed [including the Patient-Oriented SCOring Atopic Dermatitis index, Patient-Oriented Eczema Measure (POEM), Self-Administered Eczema Area and Severity Index, Itch Severity Scale, Atopic Dermatitis Quickscore and the Nottingham Eczema Severity Score] and, by consensus, POEM was selected as the preferred instrument to measure patient-reported symptoms. Further work is needed to determine the reliability and measurement error of POEM. Further work is also required to establish the importance of pain/soreness and the importance of collecting information regarding the intensity of symptoms in addition to their frequency. Much of the discussion on quality of life concerned the Dermatology Life Quality Index and Quality of Life Index for Atopic Dermatitis; however, consensus on a preferred instrument for measuring this domain could not be reached. In summary, POEM is recommended as the HOME core outcome instrument for measuring AE symptoms
Early Production of IL-22 but Not IL-17 by Peripheral Blood Mononuclear Cells Exposed to live Borrelia burgdorferi: The Role of Monocytes and Interleukin-1
If insufficiently treated, Lyme borreliosis can evolve into an inflammatory disorder affecting skin, joints, and the CNS. Early innate immunity may determine host responses targeting infection. Thus, we sought to characterize the immediate cytokine storm associated with exposure of PBMC to moderate levels of live Borrelia burgdorferi. Since Th17 cytokines are connected to host defense against extracellular bacteria, we focused on interleukin (IL)-17 and IL-22. Here, we report that, despite induction of inflammatory cytokines including IL-23, IL-17 remained barely detectable in response to B. burgdorferi. In contrast, T cell-dependent expression of IL-22 became evident within 10 h of exposure to the spirochetes. This dichotomy was unrelated to interferon-γ but to a large part dependent on caspase-1 and IL-1 bioactivity derived from monocytes. In fact, IL-1β as a single stimulus induced IL-22 but not IL-17. Neutrophils display antibacterial activity against B. burgdorferi, particularly when opsonized by antibodies. Since neutrophilic inflammation, indicative of IL-17 bioactivity, is scarcely observed in Erythema migrans, a manifestation of skin inflammation after infection, protective and antibacterial properties of IL-22 may close this gap and serve essential functions in the initial phase of spirochete infection
T-cell Subset Regulation in Atopy
Presentation of processed allergen by antigen-presenting cells to T-helper (Th) lymphocytes, which is influenced costimulatory signals, cytokines, chemokines, and regulatory T cells (Tregs), determines the development of different types of T-cell immunity. The discovery of Tregs revolutionized the primary concepts of immune regulation interpreted within the framework of a binary Th1/Th2 paradigm. Tregs play a central role in the maintenance of peripheral homeostasis, the establishment of controlled immune responses, and the inhibition of allergen-specific effector cells. Recently, some other T-cell subsets appeared, including Th17 and Th9 cells, which control local tissue inflammation through upregulation of proinflammatory cytokines and chemokines. This review aims to discuss our understanding of the T-cell subset reciprocal interaction in atopy
Psoriasis Patients Are Enriched for Genetic Variants That Protect against HIV-1 Disease
An important paradigm in evolutionary genetics is that of a delicate balance between genetic variants that favorably boost host control of infection but which may unfavorably increase susceptibility to autoimmune disease. Here, we investigated whether patients with psoriasis, a common immune-mediated disease of the skin, are enriched for genetic variants that limit the ability of HIV-1 virus to replicate after infection. We analyzed the HLA class I and class II alleles of 1,727 Caucasian psoriasis cases and 3,581 controls and found that psoriasis patients are significantly more likely than controls to have gene variants that are protective against HIV-1 disease. This includes several HLA class I alleles associated with HIV-1 control; amino acid residues at HLA-B positions 67, 70, and 97 that mediate HIV-1 peptide binding; and the deletion polymorphism rs67384697 associated with high surface expression of HLA-C. We also found that the compound genotype KIR3DS1 plus HLA-B Bw4-80I, which respectively encode a natural killer cell activating receptor and its putative ligand, significantly increased psoriasis susceptibility. This compound genotype has also been associated with delay of progression to AIDS. Together, our results suggest that genetic variants that contribute to anti-viral immunity may predispose to the development of psoriasis
Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases
Genome-wide association studies (GWASs) have identified hundreds of susceptibility genes, including shared associations across clinically distinct autoimmune diseases. We performed an inverse χ(2) meta-analysis across ten pediatric-age-of-onset autoimmune diseases (pAIDs) in a case-control study including more than 6,035 cases and 10,718 shared population-based controls. We identified 27 genome-wide significant loci associated with one or more pAIDs, mapping to in silico-replicated autoimmune-associated genes (including IL2RA) and new candidate loci with established immunoregulatory functions such as ADGRL2, TENM3, ANKRD30A, ADCY7 and CD40LG. The pAID-associated single-nucleotide polymorphisms (SNPs) were functionally enriched for deoxyribonuclease (DNase)-hypersensitivity sites, expression quantitative trait loci (eQTLs), microRNA (miRNA)-binding sites and coding variants. We also identified biologically correlated, pAID-associated candidate gene sets on the basis of immune cell expression profiling and found evidence of genetic sharing. Network and protein-interaction analyses demonstrated converging roles for the signaling pathways of type 1, 2 and 17 helper T cells (TH1, TH2 and TH17), JAK-STAT, interferon and interleukin in multiple autoimmune diseases
Integrative responses to IL-17 and TNF-a in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis.
Psoriasis is a complex inflammatory disease mediated by tumor necrosis factor (TNF)-α and cytokines secreted by specialized T-cell populations, e.g., IL-17, IL-22, and IFN-γ. The mechanisms by which innate and adaptive immune cytokines regulate inflammation in psoriasis are not completely understood. We sought to investigate the effects of TNF-α and IL-17 on keratinocyte (KC) gene profile, to identify genes that might be coregulated by these cytokines and determine how synergistically activated genes relate to the psoriasis transcriptome. Primary KCs were stimulated with IL-17 or TNF-α alone, or in combination. KC responses were assessed by gene array analysis, followed by reverse transcriptase-PCR confirmation for significant genes. We identified 160 genes that were synergistically upregulated by IL-17 and TNF-α, and 196 genes in which the two cytokines had at least an additive effect. Synergistically upregulated genes included some of the highest expressed genes in psoriatic skin with an impressive correlation between IL-17/TNF-α-induced genes and the psoriasis gene signature. KCs may be key drivers of pathogenic inflammation in psoriasis through integrating responses to TNF-α and IL-17. Our data predict that psoriasis therapy with either TNF or IL-17 antagonists will produce greater modulation of the synergistic/additive gene set, which consists of the most highly expressed genes in psoriasis skin lesions
- …