85 research outputs found

    Cascaded four-wave mixing in tapered plasmonic nanoantenna

    Full text link
    We study theoretically the cascaded four-wave mixing (FWM) in broadband tapered plasmonic nanoantennas and demonstrate a 300-fold increase in nonlinear frequency conversion detected in the main lobe of the nanoantenna far-field pattern. This is achieved by tuning the elements of the nanoantenna to resonate frequencies involved into the FWM interaction. Our findings have a potentially broad application in ultrafast nonlinear spectroscopy, sensing, on-chip optical frequency conversion, nonlinear optical metamaterials and photon sources

    Optical Yagi-Uda nanoantennas

    Get PDF
    Conventional antennas, which are widely employed to transmit radio and TV signals, can be used at optical frequencies as long as they are shrunk to nanometer-size dimensions. Optical nanoantennas made of metallic or high-permittivity dielectric nanoparticles allow for enhancing and manipulating light on the scale much smaller than wavelength of light. Based on this ability, optical nanoantennas offer unique opportunities regarding key applications such as optical communications, photovoltaics, non-classical light emission, and sensing. From a multitude of suggested nanoantenna concepts the Yagi-Uda nanoantenna, an optical analogue of the well-established radio-frequency Yagi-Uda antenna, stands out by its efficient unidirectional light emission and enhancement. Following a brief introduction to the emerging field of optical nanoantennas, here we review recent theoretical and experimental activities on optical Yagi-Uda nanoantennas, including their design, fabrication, and applications. We also discuss several extensions of the conventional Yagi-Uda antenna design for broadband and tunable operation, for applications in nanophotonic circuits and photovoltaic devices

    Multifrequency broadband tapered plasmonic nanoantennas

    Full text link
    We suggest a novel multifrequency broadband plasmonic Yagi-Uda-type nanoantenna equipped with an array of tapered directors. Each director can be used for the excitation of the antenna by nanoemitters matched spectrally with the director resonant frequency and placed in the director near-field region. Multifrequency op- eration of nanoantennas provides tremendous opportunities for broadband emission enhancement, spectroscopy and sensing. By the principle of reciprocity, the same tapered nanoantenna architecture can be used both as a transmitter and/or as a receiver, thus being useful for creating a broadband wireless communication system

    Plasmonic Nanoantennas for Efficient Control of Polarization-Entangled Photon Pairs

    Get PDF
    We suggest a novel source of polarization-entangled photon pairs based on a cross-shaped plasmonic nanoantenna driven by a single quantum dot. The integration of the nanoantenna with a metal mirror overcomes the fundamental tradeoff between the spontaneous emission (SE) enhancement and the extraction efficiency typical of microcavity and nanowire-based architectures. With a very-high extraction efficiency of entangled photons (~90%) at 1.55 um and large SE enhancement (~90) over a broad 330 nm spectral range, the proposed design will pave the way toward reliable integrated sources of nonclassical light

    A functional variant in the Stearoyl-CoA desaturase gene promoter enhances fatty acid desaturation in pork

    Get PDF
    There is growing public concern about reducing saturated fat intake. Stearoyl-CoA desaturase (SCD) is the lipogenic enzyme responsible for the biosynthesis of oleic acid (18:1) by desaturating stearic acid (18:0). Here we describe a total of 18 mutations in the promoter and 3′ non-coding region of the pig SCD gene and provide evidence that allele T at AY487830:g.2228T>C in the promoter region enhances fat desaturation (the ratio 18:1/18:0 in muscle increases from 3.78 to 4.43 in opposite homozygotes) without affecting fat content (18:0+18:1, intramuscular fat content, and backfat thickness). No mutations that could affect the functionality of the protein were found in the coding region. First, we proved in a purebred Duroc line that the C-T-A haplotype of the 3 single nucleotide polymorphisms (SNPs) (g.2108C>T; g.2228T>C; g.2281A>G) of the promoter region was additively associated to enhanced 18:1/18:0 both in muscle and subcutaneous fat, but not in liver. We show that this association was consistent over a 10-year period of overlapping generations and, in line with these results, that the C-T-A haplotype displayed greater SCD mRNA expression in muscle. The effect of this haplotype was validated both internally, by comparing opposite homozygote siblings, and externally, by using experimental Duroc-based crossbreds. Second, the g.2281A>G and the g.2108C>T SNPs were excluded as causative mutations using new and previously published data, restricting the causality to g.2228T>C SNP, the last source of genetic variation within the haplotype. This mutation is positioned in the core sequence of several putative transcription factor binding sites, so that there are several plausible mechanisms by which allele T enhances 18:1/18:0 and, consequently, the proportion of monounsaturated to saturated fat.This research was supported by grants from the Spanish Ministry of Science and Innovation (AGL2009-09779 and AGL2012-33529). RRF is recipient of a PhD scholarship from the Spanish Ministry of Science and Innovation (BES-2010-034607). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of manuscript

    Enhancing weak optical signals using a plasmonic Yagi-Uda nanoantenna array

    No full text
    Nanoantennas have been used in a wide range of applications in sensing, spectroscopy, and imaging-in general, the antennas can enhance physical phenomena such as the local electric field or concentrate light in a certain direction. We have fabricated an array of 80 plasmonic Yagi-Uda nanoantennas on the cladding of an optical fiber and, by doing this, we show that the signal reaching the fast detector can be increased by a factor of 5 dB. The experiment demonstrates that plasmonic directive nanoantennas can indeed collect and concentrate electromagnetic radiation along a certain direction and eventually could be used to enhance weak signals
    • …
    corecore