7,781 research outputs found

    A momentum Space Analysis of the Triple Pomeron Vertex in pQCD

    Full text link
    We study properties of the momentum space Triple Pomeron Vertex in perturbative QCD. Particular attention is given to the collinear limit where transverse momenta on one side of the vertex are much larger than on the other side. We also comment on the kernels in nonlinear evolution equations.Comment: Minor misprints corrected. To be published in EPJ

    Performance Enhancement of the Flexible Transonic Truss-Braced Wing Aircraft Using Variable-Camber Continuous Trailing-Edge Flaps

    Get PDF
    Aircraft designers are to a growing extent using vehicle flexibility to optimize performance with objectives such as gust load alleviation and drag minimization. More complex aerodynamically optimized configurations may also require dynamic loads and perhaps eventually flutter suppression. This paper considers an aerodynamically optimized truss-braced wing aircraft designed for a Mach 0.745 cruise. The variable camber continuous trailing edge flap concept with a feedback control system is used to enhance aeroelastic stability. A linearized reduced order aerodynamic model is developed from unsteady Reynolds averaged Navier-Stokes simulations. A static output feedback controller is developed from that model. Closed-loop simulations using the reduced order aerodynamic model show that the controller is effective in stabilizing the vehicle dynamics

    Reduced Order Modeling for Transonic Aeroservoelastic Control Law Development

    Get PDF
    As aircraft become more flexible, aeroelastic considerations become increasingly important and complex, particularly for transonic flight where nonlinearities in the flow render linear analysis tools less effective. In order to analyze these aeroelastic interactions between the fluid and the structure efficiently, reduced order models (ROMs) are sometimes generated from and used in place of computational fluid dynamics solutions. In this paper, several aerodynamic ROMs are generated and coupled with structural models to form aeroelastic ROMs. The aerodynamic ROMs generated here include the effects of control surface motion. Hence, the aeroelastic ROMs presented here are appropriate for use in aeroservoelastic applications and are intended to be used for aeroservoelastic control law development. These ROMs are used to simulate a number of test cases with and without control surface involvement. Results show that several of the ROMs generated in the paper are able to predict results similar to solutions of higher-order computational methods

    Active Flutter Suppression Using Reduced-Order Modeling for Transonic Aeroservoelastic Control Law Development

    Get PDF
    In this paper, several aerodynamic reduced-order models (ROMs) are generated and coupled with structural models to form aeroelastic ROMs. The aerodynamic ROMs generated here include the effects of control surface motion and are appropriate for use in aeroservoelastic applications. Simple observer-based full-state feedback controllers were designed from these aeroelastic ROMs. Additionally, observer gain matrices were designed from and coupled to the aeroelastic ROMs. Each (linear) observer was then used to estimate the dynamics of a (nonlinear) stand-alone computational fluid-structure dynamics simulation. Then, using the estimated states and the full-state feedback controller, control surface commands were fed back into the computational fluid-structure dynamics simulation to successfully achieve active flutter suppression. The process, as well as some results, are presented in this paper

    Geometric Scaling in Inclusive Charm Production

    Get PDF
    We show that the cross section for inclusive charm production exhibits geometric scaling in a large range of photon virtualities. In the HERA kinematic domain the saturation momentum Qsat2(x)Q_{sat}^2(x) stays below the hard scale μc2=4mc2\mu_c^2=4m_c^2, implying charm production probing mostly the color transparency regime and unitarization effects being almost negligible. We derive our results considering two saturation models which are able to describe the DESY ep collider HERA data for the proton structure function at small values of the Bjorken variable xx. A striking feature is the scaling on τ=Q22/Qsat2(x)\tau=Q_2^2/Q_{sat}^2(x) above saturation limit, corroborating recent theoretical studies.Comment: 4 pages, 2 figures. Version to be published in Physical Review Letter

    Saturation Effects in Deep Inelastic Scattering at low Q2Q^2 and its Implications on Diffraction

    Full text link
    We present a model based on the concept of saturation for small Q2Q^2 and small xx. With only three parameters we achieve a good description of all Deep Inelastic Scattering data below x=0.01x=0.01. This includes a consistent treatment of charm and a successful extrapolation into the photoproduction regime. The same model leads to a roughly constant ratio of diffractive and inclusive cross section.Comment: 24 pages, 12 figures, Latex-fil

    Saturation and geometric scaling in DIS at small x

    Full text link
    We present various aspects of the saturation model which provides good description of inclusive and diffractive DIS at small x. The model uses parton saturation ideas to take into account unitarity requirements. A new scaling predicted by the model in the small x domain is successfully confronted with the data.Comment: Presented at New Trends in HERA Physics 2001, Ringberg Castle, Tegernsee, Germany, 17-22 June 2001, minor corrections, some references adde

    Four point function of R-currents in N=4 SYM in the Regge limit at weak coupling

    Full text link
    We compute, in N=4 super Yang-Mills theory, the four point correlation function of R-currents in the Regge limit in the leading logarithmic approximation at weak coupling. Such a correlator is the closest analog to photon-photon scattering within QCD, and there is a well-defined procedure to perform the analogous computation at strong coupling via the AdS/CFT correspondence. The main result of this paper is, on the gauge theory side, the proof of Regge factorization and the explicit computation of the R-current impact factors.Comment: 21 pages, 10 figures, typos correcte
    corecore