233 research outputs found

    On collective Rabi splitting in nanolasers and nano-LEDs

    Full text link
    We analytically calculate the optical emission spectrum of nanolasers and nano-LEDs based on a model of many incoherently pumped two-level emitters in a cavity. At low pump rates we find two peaks in the spectrum for large coupling strengths and numbers of emitters. We interpret the double-peaked spectrum as a signature of collective Rabi splitting, and discuss the difference between the splitting of the spectrum and the existence of two eigenmodes. We show that an LED will never exhibit a split spectrum, even though it can have distinct eigenmodes. For systems where the splitting is possible we show that the two peaks merge into a single one when the pump rate is increased. Finally, we compute the linewidth of the systems, and discuss the influence of inter-emitter correlations on the lineshape

    Maximizing the quality factor to mode volume ratio for ultra-small photonic crystal cavities

    Get PDF
    Small manufacturing-tolerant photonic crystal cavities are systematically designed using topology optimization to enhance the ratio between quality factor and mode volume, Q/V. For relaxed manufacturing tolerance, a cavity with bow-tie shape is obtained which confines light beyond the diffraction limit into a deep-subwavelength volume. Imposition of a small manufacturing tolerance still results in efficient designs, however, with diffraction-limited confinement. Inspired by numerical results, an elliptic ring grating cavity concept is extracted via geometric fitting. Numerical evaluations demonstrate that for small sizes, topology-optimized cavities enhance the Q/V-ratio by up to two orders of magnitude relative to standard L1 cavities and more than one order of magnitude relative to shape-optimized L1 cavities. An increase in cavity size can enhance the Q/V-ratio by an increase of the Q-factor without significant increase of V. Comparison between optimized and reference cavities illustrates that significant reduction of V requires big topological changes in the cavity

    Microvascular Arteriovenous Shunting is a Probable Pathogenetic Mechanism in Erythromelalgia

    Get PDF
    Erythromelalgia is a condition consisting of red, warm, and burning painful extremities. Symptoms are relieved by cold and aggravated by heat. A wide variety of etiologic conditions can cause erythromelalgia, but one common pathogenetic mechanism, microvascular arteriovenous shunting, has been hypothesized. The aim of this study was to test this hypothesis. Quantification of skin microvascular perfusion using laser Doppler perfusion imaging and skin temperature at rest and after central body heating was performed in 14 patients with erythromelalgia and 11 controls. Attacks of erythromelalgia were induced in eight patients after heat provocation. In the plantar region of the foot, the location of numerous anatomical arteriovenous shunts, these patients significantly increased the skin perfusion as compared with asymptomatic patients with erythromelalgia and controls. In the dorsal region with few arteriovenous shunts no significant differences between the groups were demonstrated. The results show a relation between clinical symptoms and increased perfusion in the region of numerous anatomical arteriovenous shunts, and support the hypothesis of increased thermoregulatory arteriovenous shunt flow during attacks in primary erythromelalgia

    Experimental Demonstration of Nanolaser with sub-μ\muA Threshold Current

    Full text link
    We demonstrate a photonic crystal nanolaser exhibiting an ultra-low threshold of 730 nA at telecom wavelengths. The laser can be directly modulated at 3 GHz at an energy cost of 1 fJ/bit. This is the lowest threshold reported for any laser operating at room temperature and facilitates low-energy on-chip links.Comment: 3 pages with 2 figure

    Global distribution and diversity of ovine-associated Staphylococcus aureus

    Get PDF
    Staphylococcus aureus is an important pathogen of many species, including sheep, and impacts on both human and animal health, animal welfare, and farm productivity. Here we present the widest global diversity study of ovine-associated S. aureus to date. We analysed 97 S. aureus isolates from sheep and sheep products from the UK, Turkey, France, Norway, Australia, Canada and the USA using multilocus sequence typing (MLST) and spa typing. These were compared with 196 sheep isolates from Europe (n = 153), Africa (n = 28), South America (n = 14) and Australia (n = 1); 172 bovine, 68 caprine and 433 human S. aureus profiles. Overall there were 59 STs and 87 spa types in the 293 ovine isolates; in the 97 new ovine isolates there were 22 STs and 37 spa types, including three novel MLST alleles, four novel STs and eight novel spa types. Three main CCs (CC133, CC522 and CC700) were detected in sheep and these contained 61% of all isolates. Four spa types (t002, t1534, t2678 and t3576) contained 31% of all isolates and were associated with CC5, CC522, CC133 and CC522 respectively. spa types were consistent with MLST CCs, only one spa type (t1403) was present in multiple CCs. The three main ovine CCs have different but overlapping patterns of geographical dissemination that appear to match the location and timing of sheep domestication and selection for meat and wool production. CC133, CC522 and CC700 remained ovine-associated following the inclusion of additional host species. Ovine isolates clustered separately from human and bovine isolates and those from sheep cheeses, but closely with caprine isolates. As with cattle isolates, patterns of clonal diversification of sheep isolates differ from humans, indicative of their relatively recent host-jump

    High beta lasing in micropillar cavities with adiabatic layer design

    Get PDF
    We report on lasing in optically pumped adiabatic micropillar cavities, based on the AlAs/GaAs material system. A detailed study of the threshold pump power and the spontaneous emission beta factor in the lasing regime for different diameters d(c) is presented. We demonstrate a reduction of the threshold pump power by over 2 orders of magnitude from d(c) = 2.25 mu m down to 0.95 mu m. Lasing with beta factors exceeding 0.5 shows that adiabatic micropillars are operating deeply in the cavity quantum electrodynamics regime.Publisher PDFPeer reviewe
    corecore