12 research outputs found
References
www.biogeosciences-discuss.net/11/10673/2014/ doi:10.5194/bgd-11-10673-2014 © Author(s) 2014. CC Attribution 3.0 License. This discussion paper is/has been under review for the journal Biogeosciences (BG). Please refer to the corresponding final paper in BG if available. The effect of desiccation on the emission of volatile bromocarbons from two common temperate macroalga
Increasing concentrations of dichloromethane, CH2Cl2, inferred from CARIBIC air samples collected 1998–2012
Atmospheric concentrations of dichloromethane, CH2Cl2, a regulated toxic air pollutant and minor contributor to stratospheric ozone depletion, were reported to have peaked around 1990 and to be declining in the early part of the 21st century. Recent observations suggest this trend has reversed and that CH2Cl2 is once again increasing in the atmosphere. Despite the importance of ongoing monitoring and reporting of atmospheric CH2Cl2, no time series has been discussed in detail since 2006. The CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) has analysed the halocarbon content of whole-air samples collected at altitudes of between ~10–12 km via a custom-built container installed on commercial passenger aircraft since 1998, providing a long-term record of CH2Cl2 observations. In this paper we present this unique CH2Cl2 time series, discussing key flight routes which have been used at various times over the past 15 years. Between 1998 and 2012 increases were seen in all northern hemispheric regions and at different altitudes, ranging from ~7–10 ppt in background air to ~13–15 ppt in regions with stronger emissions (equating to a 38–69% increase). Of particular interest is the rising importance of India as a source of atmospheric CH2Cl2: based on CARIBIC data we provide regional emission estimates for the Indian subcontinent and show that regional emissions have increased from 3–14 Gg yr^-1 (1998–2000) to 16–25 Gg yr^-1 (2008). Potential causes of the increasing atmospheric burden of CH2Cl2 are discussed. One possible source is the increased use of CH2Cl2 as a feedstock for the production of HFC-32, a chemical used predominantly as a replacement for ozone-depleting substances in a variety of applications including air conditioners and refrigeration
A growing threat to the ozone layer from short-lived anthropogenic chlorocarbons
Large and effective reductions in emissions of long-lived ozone-depleting substance (ODS) are being achieved through the Montreal Protocol, the effectiveness of which can be seen in the declining atmospheric abundances of many ODSs. An important remaining uncertainty concerns the role of very short-lived substances (VSLSs) which, owing to their relatively short atmospheric lifetimes (less than 6 months), are not regulated under the Montreal Protocol. Recent studies have found an unexplained increase in the global tropospheric abundance of one VSLS, dichloromethane (CH2Cl2), which has increased by around 60 % over the past decade. Here we report dramatic enhancements of several chlorine-containing VSLSs (Cl-VSLSs), including CH2Cl2 and CH2ClCH2Cl (1,2-dichloroethane), observed in surface and upper-tropospheric air in East and South East Asia. Surface observations were, on occasion, an order of magnitude higher than previously reported in the marine boundary layer, whilst upper-tropospheric data were up to 3 times higher than expected. In addition, we provide further evidence of an atmospheric transport mechanism whereby substantial amounts of industrial pollution from East Asia, including these chlorinated VSLSs, can rapidly, and regularly, be transported to tropical regions of the western Pacific and subsequently uplifted to the tropical upper troposphere. This latter region is a major provider of air entering the stratosphere, and so this mechanism, in conjunction with increasing emissions of Cl-VSLSs from East Asia, could potentially slow the expected recovery of stratospheric ozone
Trends and emissions of six perfluorocarbons in the Northern Hemisphere and Southern Hemisphere
Perfluorocarbons (PFCs) are potent greenhouse gases with global warming potentials up to several thousand times greater than CO2 on a 100-year time horizon. The lack of any significant sinks for PFCs means that they have long atmospheric lifetimes of the order of thousands of years. Anthropogenic production is thought to be the only source for most PFCs. Here we report an update on the global atmospheric abundances of the following PFCs, most of which have for the first time been analytically separated according to their isomers: c-octafluorobutane (c-C4F8), n-decafluorobutane (n-C4F10), n-dodecafluoropentane (n-C5F12), n-tetradecafluorohexane (n-C6F14), and n-hexadecafluoroheptane (n-C7F16). Additionally, we report the first data set on the atmospheric mixing ratios of perfluoro-2-methylpentane (i-C6F14). The existence and significance of PFC isomers have not been reported before, due to the analytical challenges of separating them. The time series spans a period from 1978 to the present. Several data sets are used to investigate temporal and spatial trends of these PFCs: time series of air samples collected at Cape Grim, Australia, from 1978 to the start of 2018; a time series of air samples collected between July 2015 and April 2017 at Tacolneston, UK; and intensive campaign-based sampling collections from Taiwan. Although the remote “background” Southern Hemispheric Cape Grim time series indicates that recent growth rates of most of these PFCs are lower than in the 1990s, we continue to see significantly increasing mixing ratios that are between 6 % and 27 % higher by the end of 2017 compared to abundances measured in 2010. Air samples from Tacolneston show a positive offset in PFC mixing ratios compared to the Southern Hemisphere baseline. The highest mixing ratios and variability are seen in air samples from Taiwan, which is therefore likely situated much closer to PFC sources, confirming predominantly Northern Hemispheric emissions for most PFCs. Even though these PFCs occur in the atmosphere at levels of parts per trillion molar or less, their total cumulative global emissions translate into 833 million metric tonnes of CO2 equivalent by the end of 2017, 23 % of which has been emitted since 2010. Almost two-thirds of the CO2 equivalent emissions within the last decade are attributable to c-C4F8, which currently also has the highest emission rates that continue to grow. Sources of all PFCs covered in this work remain poorly constrained and reported emissions in global databases do not account for the abundances found in the atmosphere
Evaluation of stratospheric age of air from CF, CF, CF, CHF, HFC-125, HFC-227ea and SF; Implications for the calculations of halocarbon lifetimes, fractional release factors and ozone depletion potentials
In a changing climate, potential stratospheric circulation changes require long-term monitoring. Stratospheric trace gas measurements are often used as a proxy for stratospheric circulation changes via the “mean age of air” values derived from them. In this study, we investigated five potential age of air tracers – the perfluorocarbons CF4, C2F6 and C3F8 and the hydrofluorocarbons CHF3 (HFC-23) and HFC-125 – and compare them to the traditional tracer SF6 and a (relatively) shorter-lived species, HFC-227ea. A detailed uncertainty analysis was performed on mean ages derived from these “new” tracers to allow us to confidently compare their efficacy as age tracers to the existing tracer, SF6. Our results showed that uncertainties associated with the mean age derived from these new age tracers are similar to those derived from SF6, suggesting that these alternative compounds are suitable in this respect for use as age tracers. Independent verification of the suitability of these age tracers is provided by a comparison between samples analysed at the University of East Anglia and the Scripps Institution of Oceanography. All five tracers give younger mean ages than SF6, a discrepancy that increases with increasing mean age. Our findings qualitatively support recent work that suggests that the stratospheric lifetime of SF6 is significantly less than the previous estimate of 3200 years. The impact of these younger mean ages on three policy-relevant parameters – stratospheric lifetimes, fractional release factors (FRFs) and ozone depletion potentials – is investigated in combination with a recently improved methodology to calculate FRFs. Updates to previous estimations for these parameters are provided
Recommended from our members
Evaluation of stratospheric age of air from CF4, C2F6, C3F8, CHF3, HFC-125, HFC-227ea and SF6; implications for the calculations of halocarbon lifetimes, fractional release factors and ozone depletion potentials
In a changing climate,
potential stratospheric circulation changes require long-term monitoring.
Stratospheric trace gas measurements are often used as a proxy for
stratospheric circulation changes via the <q>mean age of air</q> values derived
from them. In this study, we investigated five potential age of air tracers
– the perfluorocarbons CF<sub>4</sub>, C<sub>2</sub>F<sub>6</sub> and C<sub>3</sub>F<sub>8</sub> and the
hydrofluorocarbons CHF<sub>3</sub> (HFC-23) and HFC-125 – and compare them to the
traditional tracer SF<sub>6</sub> and a (relatively) shorter-lived species,
HFC-227ea. A detailed uncertainty analysis was performed on mean ages derived
from these <q>new</q> tracers to allow us to confidently compare their efficacy
as age tracers to the existing tracer, SF<sub>6</sub>. Our results showed that
uncertainties associated with the mean age derived from these new age tracers
are similar to those derived from SF<sub>6</sub>, suggesting that these alternative
compounds are suitable in this respect for use as age tracers. Independent
verification of the suitability of these age tracers is provided by a
comparison between samples analysed at the University of East Anglia and the
Scripps Institution of Oceanography. All five tracers give younger mean ages
than SF<sub>6</sub>, a discrepancy that increases with increasing mean age. Our
findings qualitatively support recent work that suggests that the
stratospheric lifetime of SF<sub>6</sub> is significantly less than the previous
estimate of 3200 years. The impact of these younger mean ages on three
policy-relevant parameters – stratospheric lifetimes, fractional release
factors (FRFs) and ozone depletion potentials – is investigated in
combination with a recently improved methodology to calculate FRFs. Updates
to previous estimations for these parameters are provided
Effect of ocean acidification and elevated fCO2 on trace gas production from the Baltic Sea summer phytoplankton community.
The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on trace gas biogeochemistry, a large-scale mesocosm experiment was performed off Tvärminne Research Station, Finland, in summer 2012. During the second half of the experiment, dimethylsulfide (DMS) concentrations in the highest-fCO2 mesocosms (1075–1333 µatm) were 34 % lower than at ambient CO2 (350 µatm). However, the net production (as measured by concentration change) of seven halocarbons analysed was not significantly affected by even the highest CO2 levels after 5 weeks' exposure. Methyl iodide (CH3I) and diiodomethane (CH2I2) showed 15 and 57 % increases in mean mesocosm concentration (3.8 ± 0.6 increasing to 4.3 ± 0.4 pmol L−1 and 87.4 ± 14.9 increasing to 134.4 ± 24.1 pmol L−1 respectively) during Phase II of the experiment, which were unrelated to CO2 and corresponded to 30 % lower Chl a concentrations compared to Phase I. No other iodocarbons increased or showed a peak, with mean chloroiodomethane (CH2ClI) concentrations measured at 5.3 (±0.9) pmol L−1 and iodoethane (C2H5I) at 0.5 (±0.1) pmol L−1. Of the concentrations of bromoform (CHBr3; mean 88.1 ± 13.2 pmol L−1), dibromomethane (CH2Br2; mean 5.3 ± 0.8 pmol L−1), and dibromochloromethane (CHBr2Cl, mean 3.0 ± 0.5 pmol L−1), only CH2Br2 showed a decrease of 17 % between Phases I and II, with CHBr3 and CHBr2Cl showing similar mean concentrations in both phases. Outside the mesocosms, an upwelling event was responsible for bringing colder, high-CO2, low-pH water to the surface starting on day t16 of the experiment; this variable CO2 system with frequent upwelling events implies that the community of the Baltic Sea is acclimated to regular significant declines in pH caused by up to 800 µatm fCO2. After this upwelling, DMS concentrations declined, but halocarbon concentrations remained similar or increased compared to measurements prior to the change in conditions. Based on our findings, with future acidification of Baltic Sea waters, biogenic halocarbon emissions are likely to remain at similar values to today; however, emissions of biogenic sulfur could significantly decrease in this region
Abrupt reversal in emissions and atmospheric abundance of HCFC-133a (CF3CH2Cl)
Hydrochlorofluorocarbon HCFC-133a (CF3CH2Cl) is an anthropogenic compound whose consumption for emissive use is restricted under the Montreal Protocol. A recent study showed rapidly increasing atmospheric abundances and emissions. We report that, following this rise, the at- mospheric abundance and emissions have declined sharply in the past three years. We find a Northern Hemisphere HCFC-133a increase from 0.13 ppt (dry air mole fraction in parts-per-trillion) in 2000 to 0.50 ppt in 2012–mid-2013 followed by an abrupt reversal to 0.44 ppt by early 2015. Global emissions derived from these observations peaked at 3.1 kt in 2011, followed by a rapid decline of 0.5 kt yr−2 to 1.5 kt yr−1 in 2014. Sporadic HCFC-133a pollution events are detected in Europe from our high-resolution HCFC-133a records at three European stations, and in Asia from sam- ples collected in Taiwan. European emissions are estimated to be <0.1 kt yr−1 although emission hotspots were identi- fied in France
Renewed and emerging concerns over the production and emission of ozone-depleting substances
Stratospheric ozone depletion, first observed in the 1980s, has been caused by the increased production and use of substances such as chlorofluorocarbons (CFCs), halons and other chlorine-containing and bromine-containing compounds, collectively termed ozone-depleting substances (ODSs). Following controls on the production of major, long-lived ODSs by the Montreal Protocol, the ozone layer is now showing initial signs of recovery and is anticipated to return to pre-depletion levels in the mid-to-late twenty-first century, likely 2050–2060. These return dates assume widespread compliance with the Montreal Protocol and, thereby, continued reductions in ODS emissions. However, recent observations reveal increasing emissions of some controlled (for example, CFC-11, as in eastern China) and uncontrolled substances (for example, very short-lived substances (VSLSs)). Indeed, the emissions of a number of uncontrolled VSLSs are adding significant amounts of ozone-depleting chlorine to the atmosphere. In this Review, we discuss recent emissions of both long-lived ODSs and halogenated VSLSs, and how these might lead to a delay in ozone recovery. Continued improvements in observational tools and modelling approaches are needed to assess these emerging challenges to a timely recovery of the ozone layer
Kuluttajan ostokäyttäytymiseen vaikuttavat tekijät
Opinnäytetyön tavoitteena oli selvittää, mitkä tekijät vaikuttavat kuluttajan ostopäätökseen. Opinnäytetyön tut-kimusosuudessa haluttiin tutkia erityisesti Kainuun Osuuspankin nuorten asiakkaiden vakuutuskäyttäytymistä ja siihen vaikuttavia tekijöitä.
Opinnäytetyön teoria koostuu kolmesta eri osiosta. Ensimmäisessä osiossa käsitellään finanssialaa Suomessa. Osiossa käydään läpi finanssialan keskeiset toimijat ja finanssialan muuttuminen. Toisessa osiossa käsitellään kuluttajan ostokäyttäytymisen eri vaiheita. Osiossa käsitellään ostoprosessi, joka koostuu tarpeen havaitsemisesta, tiedon keruusta, vaihtoehtojen valinnasta, ostopäätöksestä ja ostopäätöksen arvioinnista. Kolmannessa osiossa käsitellään kuluttajan ostokäyttäytymiseen vaikuttavia tekijöitä. Osiossa käsitellään demografiset tekijät, sosiaaliset tekijät, yksilötekijät ja psykologiset tekijät.
Nuorten aikuisten vakuutuskäyttäytymistä koskevassa tutkimuksessa selvisi, että tutkimukseen osallistuneet henkilöt pitävät vakuuttamista tärkeänä. Tutkimuksessa selvisi myös, että heidän nykyisessä vakuutusturvassa olisi parantamisen varaa. Vakuutusten hankintaan ja ostopäätöksen syntymiseen vaikuttavat paljon vanhempien suositukset ja vanhempien nykyinen vakuutusyhtiö. Keskittämisen tuomien etujen tuntemus ei tutkimukseen osallistuneilla henkilöillä ollut kovin suuri.The objective of the thesis was to examine which factors influence consumer’s purchasing behaviour. The research section focuses mainly on Kainuu Cooperative bank’s (Kainuun Osuuspankki) younger customers’ behaviour on insurances, and to the factors affecting the insurance behaviour.
The thesis consists of three sections. The first section reviews the financial line of business in Finland. Furthermore, this section covers the key operators of the finances, as well as the alteration of the finance line of business. The second section focuses on different stages of consumer’s buying behaviour. These stages are listed as processes of purchase decision which consists of identifying the demand, collecting information, selection of choices, decision of purchase, and evaluating the decision of purchase. The third section considers the factors that have an influence on the consumer’s purchasing behaviour. The factors are classified as demographic, social, individual, and psychological factors.
According to the research of the insurance behaviour of the young adults, the participants of the study considered insurances necessary. Furthermore, the research discovered the necessity of improving the current insurance coverage. The main factor influencing the decision of purchasing insurances was the recommendation of the young customers’ parents, along with the current insurance company the parents are involved with. The participants of the research experienced unawareness of the benefits acquired from concentrating the services in one place