2,569 research outputs found
Parsec-scale radio morphology and variability of a changing-look AGN: the case of Mrk 590
We investigate the origin of the parsec-scale radio emission from the
changing-look active galactic nucleus (AGN) of Mrk 590, and examine whether the
radio power has faded concurrently with the dramatic decrease in accretion
rates observed between the 1990s and the present. We detect a compact core at
1.6 GHz and 8.4 GHz using new Very Long Baseline Array observations, finding no
significant extended, jet-like features down to 1 pc scales. The flat
spectral index () and high brightness temperature
() indicate self-absorbed synchrotron emission
from the AGN. The radio to X-ray luminosity ratio of , similar to that in coronally active stars, suggests
emission from magnetized coronal winds, although unresolved radio jets are also
consistent with the data. Comparing new Karl G. Jansky Very Large Array
measurements with archival and published radio flux densities, we find ,
, and (insignificantly) flux density decreases between the 1990s
and the year 2015 at 1.4 GHz, 5 GHz and 8.4 GHz respectively. This trend,
possibly due to the expansion and fading of internal shocks within the
radio-emitting outflow after a recent outburst, is consistent with the decline
of the optical-UV and X-ray luminosities over the same period. Such correlated
variability demonstrates the AGN accretion-outflow connection, confirming that
the changing-look behaviour in Mrk 590 originates from variable accretion rates
rather than dust obscuration. The present radio and X-ray luminosity
correlation, consistent with low/hard state accretion, suggests that the black
hole may now be accreting in a radiatively inefficient mode.Comment: 14 pages, 5 tables, 5 figures, accepted for publication in MNRA
Why Do Compact Active Galactic Nuclei at High Redshift Scintillate Less?
The fraction of compact active galactic nuclei (AGNs) that exhibit
interstellar scintillation (ISS) at radio wavelengths, as well as their
scintillation amplitudes, have been found to decrease significantly for sources
at redshifts z > 2. This can be attributed to an increase in the angular sizes
of the \muas-scale cores or a decrease in the flux densities of the compact
\muas cores relative to that of the mas-scale components with increasing
redshift, possibly arising from (1) the space-time curvature of an expanding
Universe, (2) AGN evolution, (3) source selection biases, (4) scatter
broadening in the ionized intergalactic medium (IGM) and intervening galaxies,
or (5) gravitational lensing. We examine the frequency scaling of this redshift
dependence of ISS to determine its origin, using data from a dual-frequency
survey of ISS of 128 sources at 0 < z < 4. We present a novel method of
analysis which accounts for selection effects in the source sample. We
determine that the redshift dependence of ISS is partially linked to the
steepening of source spectral indices ({\alpha}^8.4_4.9) with redshift, caused
either by selection biases or AGN evolution, coupled with weaker ISS in the
{\alpha}^8.4_4.9 < -0.4 sources. Selecting only the -0.4 < {\alpha}^8.4_4.9 <
0.4 sources, we find that the redshift dependence of ISS is still significant,
but is not significantly steeper than the expected (1+z)^0.5 scaling of source
angular sizes due to cosmological expansion for a brightness temperature and
flux-limited sample of sources. We find no significant evidence for scatter
broadening in the IGM, ruling it out as the main cause of the redshift
dependence of ISS. We obtain an upper limit to IGM scatter broadening of <
110\muas at 4.9 GHz with 99% confidence for all lines of sight, and as low as <
8\muas for sight-lines to the most compact, \sim 10\muas sources.Comment: 38 pages, 13 figures, accepted for publication in The Astrophysical
Journa
On rapid interstellar scintillation of quasars: PKS 1257-326 revisited
The line of sight towards the compact, radio loud quasar PKS 1257-326 passesthrough a patch of scattering plasma in the local Galactic ISM that causes large and rapid,intra-hour variations in the received flux density at centimetre wavelengths. This rapid interstellarscintillation (SS) has been occurring for at least 15 years, implying that the scattering“screen” is at least 100 AU in physical extent. Through observations of the ISS we have measuredmicroarcsecond-scale “core shifts” in PKS 1257-326, corresponding to changing opacityduring an intrinsic outburst. Recent analysis of VLA data of a sample of 128 quasars found 6sources scintillating with a characteristic time-scale of < 2 hours, suggesting that nearby scatteringscreens in the ISM may have a covering fraction of a few percent. That is an importantconsideration for proposed surveys of the transient and variable radio sk
Enzymatic hydrolysate from velvet antler suppresses adipogenesis in 3T3-L1 cells and attenuates obesity in high-fat diet-fed mice
The purpose of the current study was to investigate the potential anti-obesity activity of an enzymatic hydrolysate of velvet antler in inhibiting adipogenesis in 3T3-L1 cells and in high-fat diet (HFD)-fed obese mice. The enzy- matic hydrolysate was prepared using the commercial food grade protease, Protamex. The velvet antler Protamex hydrolysate (VAPH) indicated profound inhibitory effects on adipogenesis dose-dependently by decreasing the accumulation of triglycerides and down-regulating expression levels of adipogenesis-related proteins C/EBPα, SREBP-1, and PPARγ. In a mouse model of HFD-induced obesity, oral administration of VAPH (100 and 300 mg/kg for 13 weeks) significantly reduced the body weight gain that had resulted from the HFD. VAPH treat- ment also lowered the serum glucose and triglyceride levels, while increasing the HDL-C level. Furthermore, the treatment greatly reduced hepatic lipid droplet accumulation as well as the size of adipocytes. Current findings H has profound anti-obesity effects and could be an effective candidate for preventing obesity and obesity-related chronic diseases
Dual-Frequency Observations of 140 Compact, Flat-Spectrum Active Galactic Nuclei for Scintillation-Induced Variability
The 4.9 GHz Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey
detected a drop in Interstellar Scintillation (ISS) for sources at redshifts z
> 2, indicating an apparent increase in angular diameter or a decrease in flux
density of the most compact components of these sources, relative to their
extended emission. This can result from intrinsic source size effects or
scatter broadening in the Intergalactic Medium (IGM), in excess of the expected
(1+z)^0.5 angular diameter scaling of brightness temperature limited sources
due to cosmological expansion. We report here 4.9 GHz and 8.4 GHz observations
and data analysis for a sample of 140 compact, flat-spectrum sources which may
allow us to determine the origin of this angular diameter-redshift relation by
exploiting their different wavelength dependences. In addition to using ISS as
a cosmological probe, the observations provide additional insight into source
morphologies and the characteristics of ISS. As in the MASIV Survey, the
variability of the sources is found to be significantly correlated with
line-of-sight H-alpha intensities, confirming its link with ISS. For 25
sources, time delays of about 0.15 to 3 days are observed between the
scintillation patterns at both frequencies, interpreted as being caused by a
shift in core positions when probed at different optical depths. Significant
correlation is found between ISS amplitudes and source spectral index; in
particular, a large drop in ISS amplitudes is observed at spectral indices of <
-0.4 confirming that steep spectrum sources scintillate less. We detect a
weakened redshift dependence of ISS at 8.4 GHz over that at 4.9 GHz, with the
mean variance at 4-day timescales reduced by a factor of 1.8 in the z > 2
sources relative to the z < 2 sources, as opposed to the factor of 3 decrease
observed at 4.9 GHz. This suggests scatter broadening in the IGM.Comment: 30 pages, 14 figures, accepted for publication in the Astronomical
Journa
Analytical Estimate of the Critical Velocity for Vortex Pair Creation in Trapped Bose Condensates
We use a modified Thomas-Fermi approximation to estimate analytically the
critical velocity for the formation of vortices in harmonically trapped BEC. We
compare this analytical estimate to numerical calculations and to recent
experiments on trapped alkali condensates.Comment: 12 page
Detection of Six Rapidly Scintillating AGNs and the Diminished Variability of J1819+3845
The extreme, intra-hour and > 10% rms flux density scintillation observed in
AGNs such as PKS 0405-385, J1819+3845 and PKS 1257-326 at cm wavelengths has
been attributed to scattering in highly turbulent, nearby regions in the
interstellar medium. Such behavior has been found to be rare. We searched for
rapid scintillators among 128 flat spectrum AGNs and analyzed their properties
to determine the origin of such rapid and large amplitude radio scintillation.
The sources were observed at the VLA at 4.9 and 8.4 GHz simultaneously at two
hour intervals over 11 days. We detected six rapid scintillators with
characteristic time-scales of
10%. We found strong lines of evidence linking rapid scintillation to the
presence of nearby scattering regions, estimated to be < 12 pc away for ~ 200
muas sources and < 250 pc away for ~ 10 muas sources. We attribute the scarcity
of rapid and large amplitude scintillators to the requirement of additional
constraints, including large source compact fractions. J1819+3845 was found to
display ~ 2% rms variations at ~ 6 hour time-scales superposed on longer > 11
day variations, suggesting that the highly turbulent cloud responsible for its
extreme scintillation has moved away, with its scintillation now caused by a
more distant screen ~ 50 to 150 pc away.Comment: 5 pages, 3 figures, accepted for publication in Astronomy and
Astrophysic
Why Do Compact Active Galactic Nuclei at High Redshift Twinkle Less?
The fraction of compact active galactic.nuclei (AGNs) that exhibit interstellar scintillation (ISS) at radio wavelengths, as well as their scintillation amplitudes, have been found to decrease significantly for sources at redshifts z approx greater than 2. This can be attributed to an increase in the angular sizes of the mu-as-scale cores or a decrease in the flux densities of the compact mu-as cores relative to that of the mas-scale components with increasing redshift, possibly arising from (1) the space-time curvature of an expanding Universe, (2) AGN evolution, (3) source selection biases, (4) scatter broadening in the ionized intergalactic medium (IGM), or (5) gravitational lensing. We examine the frequency scaling of this redshift dependence of ISS to determine its origin, using data from a dual-frequency survey of ISS of 128 sources at 0 approx < z approx < 4. We present a novel method of analysis which accounts for selection effects in the source sample. We determine that the redshift dependence of ISS is partially linked to the steepening of source spectral indices (alpha (sup 8.4, sub 4.9)) with redshift, caused either by selection biases or AGN evolution, coupled with weaker ISS in the alpha (sup 8.4, sub 4.9) < -0.4 sources. Selecting only the -0.4 < alpha (sup 8.4, sub 4.9) < 0.4 sources, we find that the redshift dependence of ISS is still significant, but is not significantly steeper than the expected (1 + z)(exp 0.5) scaling of source angular sizes due to cosmological expansion for a brightness temperature and flux-limited sample of sources. We find no significant evidence for scatter broadening in the IGM, ruling it out as the main cause of the redshift dependence of ISS. We obtain an upper limit to IGM scatter broadening of approx. < 110 mu-as at 4.9 GHz with 99% confidence for all lines of sight, and as low as approx. < 8 mu-as for sight-lines to the most compact, approx 10 mu-as sources
Thienopyridone Drugs Are Selective Activators of AMP-Activated Protein Kinase β1-Containing Complexes
SummaryThe AMP-activated protein kinase (AMPK) is an αβγ heterotrimer that plays a pivotal role in regulating cellular and whole-body metabolism. Activation of AMPK reverses many of the metabolic defects associated with obesity and type 2 diabetes, and therefore AMPK is considered a promising target for drugs to treat these diseases. Recently, the thienopyridone A769662 has been reported to directly activate AMPK by an unexpected mechanism. Here we show that A769662 activates AMPK by a mechanism involving the β subunit carbohydrate-binding module and residues from the γ subunit but not the AMP-binding sites. Furthermore, A769662 exclusively activates AMPK heterotrimers containing the β1 subunit. Our findings highlight the regulatory role played by the β subunit in modulating AMPK activity and the possibility of developing isoform specific therapeutic activators of this important metabolic regulator
The Micro-Arcsecond Scintillation-Induced Variability (Masiv) Survey. III. Optical Identifications and New Redshifts
Intraday variability (IDV) of the radio emission from active galactic nuclei is now known to be predominantly due to interstellar scintillation (ISS). The MASIV (The Micro-Arcsecond Scintillation-Induced Variability) survey of 443 flat spectrum sources revealed that the IDV is related to the radio flux density and redshift. A study of the physical properties of these sources has been severely handicapped by the absence of reliable redshift measurements for many of these objects. This paper presents 79 new redshifts and a critical evaluation of 233 redshifts obtained from the literature. We classify spectroscopic identifications based on emission line properties, finding that 78% of the sources have broad emission lines and are mainly FSRQs. About 16% are weak lined objects, chiefly BL Lacs, and the remaining 6% are narrow line objects. The gross properties (redshift, spectroscopic class) of the MASIV sample are similar to those of other blazar surveys. However, the extreme compactness implied by ISS favors FSRQs and BL Lacs in the MASIV sample as these are the most compact object classes. We confirm that the level of IDV depends on the 5 GHz flux density for all optical spectral types. We find that BL Lac objects tend to be more variable than broad line quasars. The level of ISS decreases substantially above a redshift of about two. The decrease is found to be generally consistent with ISS expected for beamed emission from a jet that is limited to a fixed maximum brightness temperature in the source rest frame
- …