187 research outputs found

    Optimization study of high power static inverters and converters Final report

    Get PDF
    Optimization study and basic performance characteristics for conceptual designs for high power static inverter

    Editors\u27 Message: A New Platform for Pedagogical Practices and Perspectives

    Get PDF
    At the heart of the University of Dayton’s mission lies a commitment to learning, scholarship, and excellence in teaching, along with a dedication to sharing and implementing new knowledge across disciplines and among members of our diverse educational community. With these values in mind, Research and Reflection on Learning and Teaching in Higher Education (RRLTHE) is an exciting opportunity for colleagues at UD to join forces and form a community of scholars committed to promoting learning and teaching

    Expanding RIB Capabilities at the Cyclotron Institute: \textsuperscript{3}He-LIG production with an Isobar Separator LSTAR

    Full text link
    A new \textsuperscript{3}He-driven IGISOL production station and mass separator have been designed to produce neutron-deficient low-mass isotopes at the Cyclotron Institute for the TAMUTRAP facility. The LSTAR design has a mass resolution M/ΔM3,000M/\Delta M\geq 3, 000 to reject contaminants with >95%\gt95\% efficiency.Comment: Proceeding for EMIS 202

    Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma

    Get PDF
    Laser–plasma interaction (LPI) at intensities 1015–1016 W cm2 is dominated by parametric instabilities which can be responsible for a significant amount of non-collisional absorption and generate large fluxes of high-energy nonthermal electrons. Such a regime is of paramount importance for inertial confinement fusion (ICF) and in particular for the shock ignition scheme. In this paper we report on an experiment carried out at the Prague Asterix Laser System (PALS) facility to investigate the extent and time history of stimulated Raman scattering (SRS) and two-plasmon decay (TPD) instabilities, driven by the interaction of an infrared laser pulse at an intensity 1:2 1016 W cm2 with a 100 mm scalelength plasma produced from irradiation of a flat plastic target. The laser pulse duration (300 ps) and the high value of plasma temperature (4 keV) expected from hydrodynamic simulations make these results interesting for a deeper understanding of LPI in shock ignition conditions. Experimental results show that absolute TPD/SRS, driven at a quarter of the critical density, and convective SRS, driven at lower plasma densities, are well separated in time, with absolute instabilities driven at early times of interaction and convective backward SRS emerging at the laser peak and persisting all over the tail of the pulse. Side-scattering SRS, driven at low plasma densities, is also clearly observed. Experimental results are compared to fully kinetic large-scale, two-dimensional simulations. Particle-in-cell results, beyond reproducing the framework delineated by the experimental measurements, reveal the importance of filamentation instability in ruling the onset of SRS and stimulated Brillouin scattering instabilities and confirm the crucial role of collisionless absorption in the LPI energy balance

    Imaging Changes in Very Young Children with Brain Tumors Treated with Proton Therapy and Chemotherapy

    Get PDF
    ABSTRACT SUMMARY: PT promises to reduce side effects in children with brain tumors by sparing normal tissue compared with 3D conformal or intensity-modulated radiation therapy. Information is lacking about the combined effects of PT and chemotherapy in young children. We describe imaging changes in 8 very young children with localized brain tumors who received PT after chemotherapy. Mostly transient signal abnormalities and enhancement in brain parenchyma were observed by serial MR imaging, which were consistent with radiation-induced effects on normal-appearing tissue. Correlation with PT planning data revealed that the areas of imaging abnormality were located within or adjacent to the volume that received the highest radiation dose. Radiologists should be aware of these findings in children who receive PT after chemotherapy. In this report, we describe the time course of these PT-related imaging findings and correlate them with treatment and clinical outcomes. ABBREVIATIONS: AT/RT ϭ atypical teratoid rhabdoid tumor; CGE ϭ cobalt gray equivalent; CPC ϭ choroid plexus carcinoma; PNET ϭ primitive neuroectoderma

    Clinical outcomes and patient-matched molecular composition of relapsed medulloblastoma

    Get PDF
    © 2021 by American Society of Clinical Oncology. Creative Commons Attribution Non-Commercial No Derivatives 4.0 License: https://creativecommons.org/licenses/by-nc-nd/4.0/Purpose: We sought to investigate clinical outcomes of relapsed medulloblastoma and to compare molecular features between patient-matched diagnostic and relapsed tumors. Methods: Children and infants enrolled on either SJMB03 (NCT00085202) or SJYC07 (NCT00602667) trials who experienced medulloblastoma relapse were analyzed for clinical outcomes, including anatomic and temporal patterns of relapse and postrelapse survival. A largely independent, paired molecular cohort was analyzed by DNA methylation array and next-generation sequencing. Results: A total of 72 of 329 (22%) SJMB03 and 52 of 79 (66%) SJYC07 patients experienced relapse with significant representation of Group 3 and wingless tumors. Although most patients exhibited some distal disease (79%), 38% of patients with sonic hedgehog tumors experienced isolated local relapse. Time to relapse and postrelapse survival varied by molecular subgroup with longer latencies for patients with Group 4 tumors. Postrelapse radiation therapy among previously nonirradiated SJYC07 patients was associated with long-term survival. Reirradiation was only temporizing for SJMB03 patients. Among 127 patients with patient-matched tumor pairs, 9 (7%) experienced subsequent nonmedulloblastoma CNS malignancies. Subgroup (96%) and subtype (80%) stabilities were largely maintained among the remainder. Rare subgroup divergence was observed from Group 4 to Group 3 tumors, which is coincident with genetic alterations involving MYC, MYCN, and FBXW7. Subgroup-specific patterns of alteration were identified for driver genes and chromosome arms. Conclusion: Clinical behavior of relapsed medulloblastoma must be contextualized in terms of up-front therapies and molecular classifications. Group 4 tumors exhibit slower biological progression. Utility of radiation at relapse is dependent on patient age and prior treatments. Degree and patterns of molecular conservation at relapse vary by subgroup. Relapse tissue enables verification of molecular targets and identification of occult secondary malignancies.info:eu-repo/semantics/publishedVersio

    Identification of a 6.6 microsecond isomeric state in 175Ir

    Get PDF
    An experiment has been performed to study excited states in the neutron-deficient nucleus 175Ir via the use of the JUROGAM II high-purity germanium detector array and the RITU gas-filled separator at JYFL, Jyväskylä. By using isomer tagging, an isomeric state with a half-life of 6.58(15) μs has been observed in 175Ir for the first time. It has been established that the isomer decays via a 45.2 (E1)–26.1 (M1) keV cascade to new states below the previously reported ground state in 175Ir with Iπ = (5/2−). We now reassign this (5/2−) state to the isomeric state discovered in this study.peerReviewe
    corecore