6,222 research outputs found
On the classical equivalence of monodromy matrices in squashed sigma model
We proceed to study the hybrid integrable structure in two-dimensional
non-linear sigma models with target space three-dimensional squashed spheres. A
quantum affine algebra and a pair of Yangian algebras are realized in the sigma
models and, according to them, there are two descriptions to describe the
classical dynamics 1) the trigonometric description and 2) the rational
description, respectively. For every description, a Lax pair is constructed and
the associated monodromy matrix is also constructed. In this paper we show the
gauge-equivalence of the monodromy matrices in the trigonometric and rational
description under a certain relation between spectral parameters and the
rescalings of sl(2) generators.Comment: 32pages, 3figures, references added, introduction and discussion
sections revise
Topological defect formation in quenched ferromagnetic Bose-Einstein condensates
We study the dynamics of the quantum phase transition of a ferromagnetic
spin-1 Bose-Einstein condensate from the polar phase to the broken-axisymmetry
phase by changing magnetic field, and find the spontaneous formation of spinor
domain walls followed by the creation of polar-core spin vortices. We also find
that the spin textures depend very sensitively on the initial noise
distribution, and that an anisotropic and colored initial noise is needed to
reproduce the Berkeley experiment [Sadler et al., Nature 443, 312 (2006)]. The
dynamics of vortex nucleation and the number of created vortices depend also on
the manner in which the magnetic field is changed. We point out an analogy
between the formation of spin vortices from domain walls in a spinor BEC and
that of vortex-antivortex pairs from dark solitons in a scalar BEC.Comment: 10 pages, 11 figure
The classical origin of quantum affine algebra in squashed sigma models
We consider a quantum affine algebra realized in two-dimensional non-linear
sigma models with target space three-dimensional squashed sphere. Its affine
generators are explicitly constructed and the Poisson brackets are computed.
The defining relations of quantum affine algebra in the sense of the Drinfeld
first realization are satisfied at classical level. The relation to the
Drinfeld second realization is also discussed including higher conserved
charges. Finally we comment on a semiclassical limit of quantum affine algebra
at quantum level.Comment: 25 pages, 2 figure
Inert-states of spin-5 and spin-6 Bose-Einstein condensates
In this paper we consider spinor Bose-Einstein condensates with spin f=5 and
f=6 in the presence and absence of external magnetic field at the mean field
level. We calculate all of so-called inert-states of these systems.
Inert-states are very unique class of stationary states because they remain
stationary while Hamiltonian parameters change. Their existence comes from
Michel's theorem. For illustration of symmetry properties of the inert-states
we use method that allows classification of the systems as a polyhedron with 2f
vertices proposed by R. Barnett et al., Phys. Rev. Lett. 97, 180412 (2006).Comment: 19 pages, 4 figure
Classical integrability of Schrodinger sigma models and q-deformed Poincare symmetry
We discuss classical integrable structure of two-dimensional sigma models
which have three-dimensional Schrodinger spacetimes as target spaces. The
Schrodinger spacetimes are regarded as null-like deformations of AdS_3. The
original AdS_3 isometry SL(2,R)_L x SL(2,R)_R is broken to SL(2,R)_L x U(1)_R
due to the deformation. According to this symmetry, there are two descriptions
to describe the classical dynamics of the system, 1) the SL(2,R)_L description
and 2) the enhanced U(1)_R description. In the former 1), we show that the
Yangian symmetry is realized by improving the SL(2,R)_L Noether current. Then a
Lax pair is constructed with the improved current and the classical
integrability is shown by deriving the r/s-matrix algebra. In the latter 2), we
find a non-local current by using a scaling limit of warped AdS_3 and that it
enhances U(1)_R to a q-deformed Poincare algebra. Then another Lax pair is
presented and the corresponding r/s-matrices are also computed. The two
descriptions are equivalent via a non-local map.Comment: 20 pages, no figure, further clarification and references adde
Lunin-Maldacena backgrounds from the classical Yang-Baxter equation -- Towards the gravity/CYBE correspondence
We consider \gamma-deformations of the AdS_5xS^5 superstring as Yang-Baxter
sigma models with classical r-matrices satisfying the classical Yang-Baxter
equation (CYBE). An essential point is that the classical r-matrices are
composed of Cartan generators only and then generate abelian twists. We present
examples of the r-matrices that lead to real \gamma-deformations of the
AdS_5xS^5 superstring. Finally we discuss a possible classification of
integrable deformations and the corresponding gravity solution in terms of
solutions of CYBE. This classification may be called the gravity/CYBE
correspondence.Comment: 18 pages, no figure, LaTeX, v2:references and further clarifications
adde
Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 1B: Concise review
Reports on the design process, support of the design process, IPAD System design catalog of IPAD technical program elements, IPAD System development and operation, and IPAD benefits and impact are concisely reviewed. The approach used to define the design is described. Major activities performed during the product development cycle are identified. The computer system requirements necessary to support the design process are given as computational requirements of the host system, technical program elements and system features. The IPAD computer system design is presented as concepts, a functional description and an organizational diagram of its major components. The cost and schedules and a three phase plan for IPAD implementation are presented. The benefits and impact of IPAD technology are discussed
Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 6: IPAD system development and operation
The strategy of the IPAD implementation plan presented, proposes a three phase development of the IPAD system and technical modules, and the transfer of this capability from the development environment to the aerospace vehicle design environment. The system and technical module capabilities for each phase of development are described. The system and technical module programming languages are recommended as well as the initial host computer system hardware and operating system. The cost of developing the IPAD technology is estimated. A schedule displaying the flowtime required for each development task is given. A PERT chart gives the developmental relationships of each of the tasks and an estimate of the operational cost of the IPAD system is offered
Accessibility of the resources of near Earth space using multi-impulse transfers
Most future concepts for exploration and exploitation of space require a large initial mass in low Earth orbit. Delivering this mass requires overcoming Earth's natural gravity well, which imposes a distinct obstacle to space-faring. An alternative for future space progress is to search for resources in-situ among the near Earth asteroid population. This paper examines the scenario of future utilization of asteroid resources. The near Earth asteroid resources that could be transferred to a bound Earth orbit are determined by integrating the probability of finding asteroids inside the Keplerian orbital element space of the set of transfers with an specific energy smaller than a given threshold. Transfers are defined by a series of impulsive maneuvers and computed using the patched-conic approximation. The results show that even moderately low energy transfers enable access to a large mass of resources
- âŠ