290 research outputs found

    Hints on the quadrupole deformation of the Δ\Delta(1232)

    Get PDF
    The E2/M1 ratio (EMR) of the Δ\Delta(1232) is extracted from the world data in pion photoproduction by means of an Effective Lagrangian Approach (ELA).This quantity has been derived within a crossing symmetric, gauge invariant, and chiral symmetric Lagrangian model which also contains a consistent modern treatment of the Δ\Delta(1232) resonance. The \textit{bare} s-channel Δ\Delta(1232) contribution is well isolated and Final State Interactions (FSI) are effectively taken into account fulfilling Watson's theorem. The obtained EMR value, EMR=(1.30±0.52)=(-1.30\pm0.52)%, is in good agreement with the latest lattice QCD calculations [Phys. Rev. Lett. 94, 021601 (2005)] and disagrees with results of current quark model calculations.Comment: Enlarged conclusions and explanations on the E2/M1 ratio. Figure 3 improved. References updated. 5 pages. 3 figures. 2 tables. Accepted for publication in Physical Review

    Solution of the two identical ion Penning trap final state

    Get PDF
    We have derived a closed form analytic expression for the asymptotic motion of a pair of identical ions in a high precision Penning trap. The analytic solution includes the effects of special relativity and the Coulomb interaction between the ions. The existence and physical relevance of such a final state is supported by a confluence of theoretical, experimental and numerical evidence.Comment: 5 pages and 2 figure

    Sources and export of particle-borne organic matter during a monsoon flood in a catchment of northern Laos

    Get PDF
    International audienceThe yields of the tropical rivers of Southeast Asia supply large quantities of carbon to the ocean. The origin and dynamics of particulate organic matter were studied in the Houay Xon River catchment located in northern Laos during the first erosive flood of the rainy season in May 2012. This cultivated catchment is equipped with three successive gauging stations draining areas ranging between 0.2 and 11.6 km2 on the main stem of the permanent stream, and two additional stations draining 0.6 ha hillslopes. In addition, the sequential monitoring of rainwater, overland flow and suspended organic matter compositions was conducted at the 1 m2 plot scale during a storm. The composition of particulate organic matter (total organic carbon and total nitrogen concentrations, δ13C and δ15N) was determined for suspended sediment, soil surface (top 2 cm) and soil subsurface (gullies and riverbanks) samples collected in the catchment (n = 57, 65 and 11, respectively). Hydrograph separation of event water was achieved using water electric conductivity and δ18O measurements for rainfall, overland flow and river water base flow (n = 9, 30 and 57, respectively). The composition of particulate organic matter indicates that upstream suspended sediments mainly originated from cultivated soils labelled by their C3 vegetation cover (upland rice, fallow vegetation and teak plantations). In contrast, channel banks characterized by C4 vegetation (Napier grass) supplied significant quantities of sediment to the river during the flood rising stage at the upstream station as well as in downstream river sections. The highest runoff coefficient (11.7%), sediment specific yield (433 kg ha−1), total organic carbon specific yield (8.3 kg C ha−1) and overland flow contribution (78–100%) were found downstream of reforested areas planted with teaks. Swamps located along the main stream acted as sediment filters and controlled the composition of suspended organic matter. Total organic carbon specific yields were particularly high because they occurred during the first erosive storm of the rainy season, just after the period of slash-and-burn operations in the catchment

    A branch and cut algorithm for hub location problems with single assignment

    Get PDF
    The hub location problem with single assignment is the problem of locating hubs and assigning the terminal nodes to hubs in order to minimize the cost of hub installation and the cost of routing the traffic in the network. There may also be capacity restrictions on the amount of traffic that can transit by hubs. The aim of this paper is to investigate polyhedral properties of these problems and to develop a branch and cut algorithm based on these results. © Springer-Verlag 2004

    The Absence of Positive Energy Bound States for a Class of Nonlocal Potentials

    Full text link
    We generalize in this paper a theorem of Titchmarsh for the positivity of Fourier sine integrals. We apply then the theorem to derive simple conditions for the absence of positive energy bound states (bound states embedded in the continuum) for the radial Schr\"odinger equation with nonlocal potentials which are superposition of a local potential and separable potentials.Comment: 23 page

    Factorization theorems, effective field theory, and nonleptonic heavy meson decays

    Full text link
    The nonleptonic heavy meson decays BD()π(ρ),J/ψK()B\to D^{(*)}\pi(\rho), J/\psi K^{(*)} and DK()πD\to K^{(*)}\pi are studied based on the three-scale perturbative QCD factorization theorem developed recently. In this formalism the Bauer-Stech-Wirbel parameters a_1 and a_2 are treated as the Wilson coefficients, whose evolution from the W boson mass down to the characteristic scale of the decay processes is determined by effective field theory. The evolution from the characteristic scale to a lower hadronic scale is formulated by the Sudakov resummation. The scale-setting ambiguity, which exists in the conventional approach to nonleptonic heavy meson decays, is moderated. Nonfactorizable and nonspectator contributions are taken into account as part of the hard decay subamplitudes. Our formalism is applicable to both bottom and charm decays, and predictions, including those for the ratios R and R_L associated with the BJ/ψK()B\to J/\psi K^{(*)} decays, are consistent with experimental data.Comment: 39 pages, latex, 5 figures, revised version with some correction

    Model independent analysis of polarization effects in elastic electron deuteron scattering in presence of two--photon exchange

    Get PDF
    The general spin structure of the matrix element, taking into account the two--photon exchange contribution, for the elastic electron (positron) --deuteron scattering has been derived using general symmetry properties of the hadron electromagnetic interaction, such as P--, C-- and T--invariances as well as lepton helicity conservation in QED at high energy. Taking into account also crossing symmetry, the amplitudes of ede^{\mp}d-scattering can be parametrized in terms of fifteen real functions. The expressions for the differential cross section and for all polarization observables are given in terms of these functions. We consider the case of an arbitrary polarized deuteron target and polarized electron beam (both longitudinal and transverse). The transverse polarization of the electron beam induces a single--spin asymmetry which is non--zero in presence of two--photon exchange. It is shown that elastic deuteron electromagnetic form factors can still be extracted in presence of two photon exchange, from the measurements of the differential cross section and of one polarization observable (for example, the tensor asymmetry) for electron and positron deuteron elastic scattering, in the same kinematical conditions.Comment: 28 page

    Hyperon-Nucleon Final State Interaction in Kaon Photoproduction of the Deuteron

    Get PDF
    Final state hyperon-nucleon interaction in strangeness photoproduction of the deuteron is investigated making use of the covariant reaction formalism and the P-matrix approach to the YN system. Remarkably simple analytical expression for the amplitude is obtained. Pronounced effects due to final state interaction are predicted including the manifestation of the 2.13 GeV resonance.Comment: LaTeX, 13 page

    Influence of the volume fraction on the electrokinetic properties of maghemite nanoparticles in suspension

    Get PDF
    Special issue in Honour of Pierre TURQInternational audienceWe used several complementary experimental and theoretical tools to characterise the charge properties of well-definedmaghemite nanoparticles in solution as a function of the volume fraction. The radius of the nanoparticles is equal to 6 nm.The structural charge was measured from chemical titration and was found high enough to expect some counterions tobe electrostatically attracted to the surface, decreasing the apparent charge of the nanoparticle. Direct-current conductivitymeasurements were interpreted by an analytical transport theory to deduce the value of this apparent charge, denoted here by‘dynamic effective charge’. This dynamic effective charge is found to decrease strongly with the volume fraction. In contrast,the ‘static’ effective charge, defined thanks to the Bjerrum criterion and computed from Monte Carlo simulations turns outto be almost independent of the volume fraction. In the range of Debye screening length and volume fraction investigatedhere, double layers around nanoparticles actually interact with each other. This strong interaction between nanocolloidalmaghemite particles is probably responsible for the experimental dependence of the electrokinetic properties with the volumefraction

    General analysis of two--photon exchange in elastic electron--4He^4He scattering and e++eπ++π.e^++e^-\to \pi^++\pi^-.

    Full text link
    Using a general parametrization of the spin structure of the matrix element for the elastic e+4Hee^-+^4He scattering and for the annihilation e++eπ++πe^++e^-\to \pi^++\pi^- reactions in terms of two complex amplitudes, we derive general properties of the observables in presence of two--photon exchange. We show that this mechanism induces a specific dependence of the differential cross section on the angle of the emitted particle. We reanalyze the existing experimental data on the differential cross section, for elastic electron scattering on 4He^4He, in the light of this result.Comment: 15 pages 1 figur
    corecore