52 research outputs found

    Air pollution exposure during critical time periods in gestation and alterations in cord blood lymphocyte distribution: a cohort of livebirths

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Toxic exposures have been shown to influence maturation of the immune system during gestation. This study investigates the association between cord blood lymphocyte proportions and maternal exposure to air pollution during each gestational month.</p> <p>Methods</p> <p>Cord blood was analyzed using a FACSort flow cytometer to determine proportions of T lymphocytes (CD3<sup>+ </sup>cells and their subsets, CD4<sup>+ </sup>and CD8<sup>+</sup>), B lymphocytes (CD19<sup>+</sup>) and natural killer (NK) cells. Ambient air concentrations of 12 polycyclic aromatic hydrocarbons (PAH) and particulate matter < 2.5 micrometer in diameter (PM<sub>2.5</sub>) were measured using fixed site monitors. Arithmetic means of these pollutants, calculated for each gestational month, were used as exposure metrics. Data on covariates were obtained from medical records and questionnaires. Multivariable linear regression models were fitted to estimate associations between monthly PAH or PM<sub>2.5 </sub>and cord blood lymphocytes, adjusting for year of birth and district of residence and, in further models, gestational season and number of prior live births.</p> <p>Results</p> <p>The adjusted models show significant associations between PAHs or PM<sub>2.5 </sub>during early gestation and increases in CD3<sup>+ </sup>and CD4<sup>+ </sup>lymphocytes percentages and decreases in CD19<sup>+ </sup>and NK cell percentages in cord blood. In contrast, exposures during late gestation were associated with decreases in CD3<sup>+ </sup>and CD4<sup>+ </sup>fractions and increases in CD19<sup>+ </sup>and NK cell fractions. There was no significant association between alterations in lymphocyte distribution and air pollution exposure during the mid gestation.</p> <p>Conclusions</p> <p>PAHs and PM<sub>2.5 </sub>in ambient air may influence fetal immune development via shifts in cord blood lymphocytes distributions. Associations appear to differ by exposure in early versus late gestation.</p

    The impact of black carbon (BC) on mode-specific galvanic skin response (GSR) as a measure of stress in urban environments

    Get PDF
    Previous research has shown that walking and cycling could help alleviate stress in cities, however there is poor knowledge on how specific microenvironmental conditions encountered during daily journeys may lead to varying degrees of stress experienced at that moment. We use objectively measured data and a robust causal inference framework to address this gap. Using a Bayesian Doubly Robust (BDR) approach, we find that black carbon exposure statistically significantly increases stress, as measured by Galvanic Skin Response (GSR), while cycling and while walking. Augmented Outcome Regression (AOR) models indicate that greenspace exposure and the presence of walking or cycling infrastructure could reduce stress. None of these effects are statistically significant for people in motorized transport. These findings add to a growing evidence-base on health benefits of policies aimed at decreasing air pollution, improving active travel infrastructure and increasing greenspace in cities

    Wearable sensors for personal monitoring and estimation of inhaled traffic-related air pollution: evaluation of methods

    Get PDF
    Physical activity and ventilation rates have an effect on an individual’s dose and may be important to consider in exposure–response relationships; however, these factors are often ignored in environmental epidemiology studies. The aim of this study was to evaluate methods of estimating the inhaled dose of air pollution and understand variability in the absence of a true gold standard metric. Five types of methods were identified: (1) methods using (physical) activity types, (2) methods based on energy expenditure, METs (metabolic equivalents of task), and oxygen consumption, (3) methods based on heart rate or (4) breathing rate, and (5) methods that combine heart and breathing rate. Methods were compared using a real-life data set of 122 adults who wore devices to track movement, black carbon air pollution, and physiological health markers for 3 weeks in three European cities. Different methods for estimating minute ventilation performed well in relative terms with high correlations among different methods, but in absolute terms, ignoring increased ventilation during day-to-day activities could lead to an underestimation of the daily dose by a factor of 0.08–1.78. There is no single best method, and a multitude of methods are currently being used to approximate the dose. The choice of a suitable method for determining the dose in future studies will depend on both the size and the objectives of the study

    Physical activity and sedentary behaviour in daily life: A comparative analysis of the Global Physical Activity Questionnaire (GPAQ) and the SenseWear armband

    Get PDF
    Reduction of sedentary time and an increase in physical activity offer potential to improve public health. However, quantifying physical activity behaviour under real world conditions is a major challenge and no standard of good practice is available. Our aim was to compare the results of physical activity and sedentary behaviour obtained with a self-reported instrument (Global Physical Activity Questionnaire (GPAQ)) and a wearable sensor (SenseWear) in a repeated measures study design. Healthy adults (41 in Antwerp, 41 in Barcelona and 40 in London) wore the SenseWear armband for seven consecutive days and completed the GPAQ on the final day. This was repeated three times. We used the Wilcoxon signed rank sum test, Spearman correlation coefficients, mixed effects regression models and Bland-Altman plots to study agreement between both methods. Mixed models were used to assess the effect of personal characteristics on the absolute and relative difference between estimates obtained with the GPAQ and SenseWear. Moderate to vigorous energy expenditure and duration derived from the GPAQ were significantly lower (p0.59). Results for sedentary behaviour did not differ, yet were poorly correlated (r<0.25). The differences between all variables were reproducible across repeated measurements. In addition, we observed a relationship between these differences and BMI, body fat and physical activity domain. Due to the lack of a standardized protocol, results from different studies measuring physical activity and sedentary behaviour are difficult to compare. Therefore, we suggested an easy-to-implement approach for future studies adding the GPAQ to the wearable of choice as a basis for comparisons

    Long-Term Exposure to Primary Traffic Pollutants and Lung Function in Children: Cross-Sectional Study and Meta-Analysis.

    Get PDF
    BACKGROUND: There is widespread concern about the possible health effects of traffic-related air pollution. Nitrogen dioxide (NO2) is a convenient marker of primary pollution. We investigated the associations between lung function and current residential exposure to a range of air pollutants (particularly NO2, NO, NOx and particulate matter) in London children. Moreover, we placed the results for NO2 in context with a meta-analysis of published estimates of the association. METHODS AND FINDINGS: Associations between primary traffic pollutants and lung function were investigated in 4884 children aged 9-10 years who participated in the Child Heart and Health Study in England (CHASE). A systematic literature search identified 13 studies eligible for inclusion in a meta-analysis. We combined results from the meta-analysis with the distribution of the values of FEV1 in CHASE to estimate the prevalence of children with abnormal lung function (FEV1<80% of predicted value) expected under different scenarios of NO2 exposure. In CHASE, there were non-significant inverse associations between all pollutants except ozone and both FEV1 and FVC. In the meta-analysis, a 10 ÎĽg/m3 increase in NO2 was associated with an 8 ml lower FEV1 (95% CI: -14 to -1 ml; p: 0.016). The observed effect was not modified by a reported asthma diagnosis. On the basis of these results, a 10 ÎĽg/m3 increase in NO2 level would translate into a 7% (95% CI: 4% to 12%) increase of the prevalence of children with abnormal lung function. CONCLUSIONS: Exposure to traffic pollution may cause a small overall reduction in lung function and increase the prevalence of children with clinically relevant declines in lung function

    Regional differences in prediction models of lung function in Germany

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the influencing potential of specific characteristics on lung function in different populations. The aim of this analysis was to determine whether lung function determinants differ between subpopulations within Germany and whether prediction equations developed for one subpopulation are also adequate for another subpopulation.</p> <p>Methods</p> <p>Within three studies (KORA C, SHIP-I, ECRHS-I) in different areas of Germany 4059 adults performed lung function tests. The available data consisted of forced expiratory volume in one second, forced vital capacity and peak expiratory flow rate. For each study multivariate regression models were developed to predict lung function and Bland-Altman plots were established to evaluate the agreement between predicted and measured values.</p> <p>Results</p> <p>The final regression equations for FEV<sub>1 </sub>and FVC showed adjusted r-square values between 0.65 and 0.75, and for PEF they were between 0.46 and 0.61. In all studies gender, age, height and pack-years were significant determinants, each with a similar effect size. Regarding other predictors there were some, although not statistically significant, differences between the studies. Bland-Altman plots indicated that the regression models for each individual study adequately predict medium (i.e. normal) but not extremely high or low lung function values in the whole study population.</p> <p>Conclusions</p> <p>Simple models with gender, age and height explain a substantial part of lung function variance whereas further determinants add less than 5% to the total explained r-squared, at least for FEV1 and FVC. Thus, for different adult subpopulations of Germany one simple model for each lung function measures is still sufficient.</p
    • …
    corecore