394 research outputs found
An Innovative Platform Merging Elemental Analysis and Ftir Imaging for Breast Tissue Analysis
Histopathology and immunohistology remain the gold standard for breast cancer diagnostic. Yet, these approaches do not usually provide a sufficiently detailed characterization of the pathology. The purpose of this work is to demonstrate for the first time that elemental analysis and Fourier transform infrared spectroscopy microscopic examination of breast tissue sections can be merged into one dataset to provide a single set of markers based on both organic molecules and inorganic trace elements. For illustrating the method, 6 mammary tissue sections were used. Fourier transform infrared (FTIR) spectroscopy images reported a fingerprint of the organic molecules present in the tissue section and laser ablation elemental analysis (LA-ICP-MS) images brought inorganic element profiles. The 6 tissue sections provided 31 106 and 150,000 spectra for FTIR and LA-ICP-MS spectra respectively. The results bring the proof of concept that breast tissue can be analyzed simultaneously by FTIR spectroscopy and laser ablation elemental analysis (LA-ICP-MS) to provide in both case reasonably high resolution images. We show how to bring the images obtained by the two methods to a same spatial resolution and how to use image registration to analyze the data originating from both techniques as one block of data. We finally demonstrates the elemental analysis is orthogonal to all FTIR markers as no significant correlation is found between FTIR and LA-ICP-MS data. Combining FTIR and LA-ICP-MS imaging becomes possible, providing two orthogonal methods which can bring an unprecedented diversity of information on the tissue. This opens a new avenue of tissue section analyses providing unprecedented diagnostic potential. - 2019, The Author(s).This study was made possible by a NPRP Award [7–1267–3–328] from the Qatar National Research Fund (a member of The Qatar Foundation). E.G. is Research Director with the National Fund for Scientific Research (Belgium). The statements made herein are solely the responsibility of the authors.Scopu
Treatment of Linear and Nonlinear Dielectric Property of Molecular Monolayer and Submonolayer with Microscopic Dipole Lattice Model: I. Second Harmonic Generation and Sum-Frequency Generation
In the currently accepted models of the nonlinear optics, the nonlinear
radiation was treated as the result of an infinitesimally thin polarization
sheet layer, and a three layer model was generally employed. The direct
consequence of this approach is that an apriori dielectric constant, which
still does not have a clear definition, has to be assigned to this polarization
layer. Because the Second Harmonic Generation (SHG) and the Sum-Frequency
Generation vibrational Spectroscopy (SFG-VS) have been proven as the sensitive
probes for interfaces with the submonolayer coverage, the treatment based on
the more realistic discrete induced dipole model needs to be developed. Here we
show that following the molecular optics theory approach the SHG, as well as
the SFG-VS, radiation from the monolayer or submonolayer at an interface can be
rigorously treated as the radiation from an induced dipole lattice at the
interface. In this approach, the introduction of the polarization sheet is no
longer necessary. Therefore, the ambiguity of the unaccounted dielectric
constant of the polarization layer is no longer an issue. Moreover, the
anisotropic two dimensional microscopic local field factors can be explicitly
expressed with the linear polarizability tensors of the interfacial molecules.
Based on the planewise dipole sum rule in the molecular monolayer, crucial
experimental tests of this microscopic treatment with SHG and SFG-VS are
discussed. Many puzzles in the literature of surface SHG and SFG spectroscopy
studies can also be understood or resolved in this framework. This new
treatment may provide a solid basis for the quantitative analysis in the
surface SHG and SFG studies.Comment: 23 pages, 3 figure
Synthesis and in vitro characterization of anticancer platinum(II) coordinates: NCI Compare and FTIR spectroscopy for drug candidate profiling
Platinum-based drugs have been used for several decades to successfully treat diverse cancers. Cisplatin, the original compound of this class, is effective against various tumor types, yet it exhibits toxic side effects and tumors often develop resistance. We developed an original in vitro approach to rapidly determine whether platinum compounds could at least partially overcome these limitations by exhibiting a modified activity pattern. From preliminary studies on a twenty compounds series by our group, five compounds were selected for further investigation. After having determined their anticancer potencies through MTT growth inhibition assays, the two most potent compounds (IC50 = 2 µM) were evaluated using the 60 human tumor cell line panel from the NCI and the results were compared to those of the NCI database using the COMPARE algorithm. To complete this approach, the products were compared to cisplatin and oxaliplatin using a FTIR spectroscopy technique allowing the fingerprinting of metabolic changes arising upon drug treatment inside cells.
Results interestingly show a relatively low correlation of the tested compounds to Pt(II) compounds from the NCI database (and obviously to marketed Pt drugs), although they correlate to DNA targeting compounds as expected. Beside this, FTIR experiments indicate a probably different biochemical impact on cells after treatment compared to cisplatin and oxaliplatin, which supports the correlation data from the NCI60 panel. In conclusion, this original approach may be effective for the early screening of a research compounds series and could therefore help for lead identification of new metallodrug intended for cancer treatment. In addition, a convenient synthesis of enantiopure diamines allowing the production of both diastereomeric series from the same precursors is reported
Membrane protein dynamics: limited lipid control
Correlation of lipid disorder with membrane protein dynamics has been studied with infrared spectroscopy, by combining data characterizing lipid phase, protein structure and, via hydrogen-deuterium (H/D) exchange, protein dynamics. The key element was a new measuring scheme, by which the combined effects of time and temperature on the H/D exchange could be separated. Cyanobacterial and plant thylakoid membranes, mammalian mitochondria membranes, and for comparison, lysozyme were investigated. In dissolved lysozyme, as a function of temperature, H/D exchange involved only reversible movements (the secondary structure did not change considerably); heat-denaturing was a separate event at much higher temperature. Around the low-temperature functioning limit of the biomembranes, lipids affected protein dynamics since changes in fatty acyl chain disorders and H/D exchange exhibited certain correlation. H/D exchange remained low in all membranes over physiological temperatures. Around the high-temperature functioning limit of the membranes, the exchange rates became higher. When temperature was further increased, H/D exchange rates went over a maximum and afterwards decreased (due to full H/D exchange and/or protein denaturing). Maximal H/D exchange rate temperatures correlated neither with the disorder nor with the unsaturation of lipids. In membrane proteins, in contrast to lysozyme, the onsets of sizable H/D exchange rates were the onsets of irreversible denaturing as well. Seemingly, at temperatures where protein self-dynamics allows large-scale H/D exchange, lipid-protein coupling is so weak that proteins prefer aggregating to limit the exposure of their hydrophobic surface regions to water. In all membranes studied, dynamics seemed to be governed by lipids around the low-temperature limit, and by proteins around the high-temperature limit of membrane functionality
A Major Role for Side-Chain Polyglutamine Hydrogen Bonding in Irreversible Ataxin-3 Aggregation
The protein ataxin-3 consists of an N-terminal globular Josephin domain (JD) and an unstructured C-terminal region containing a stretch of consecutive glutamines that triggers the neurodegenerative disorder spinocerebellar ataxia type 3, when it is expanded beyond a critical threshold. The disease results from misfolding and aggregation, although the pathway and structure of the aggregation intermediates are not fully understood. In order to provide insight into the mechanism of the process, we monitored the aggregation of a normal (AT3Q24) ataxin-3, an expanded (AT3Q55) ataxin-3, and the JD in isolation. We observed that all of them aggregated, although the latter did so at a much slower rate. Furthermore, the expanded AT3Q55 displayed a substantially different behavior with respect to the two other variants in that at the latest stages of the process it was the only one that did the following: i) lost its reactivity towards an anti-oligomer antibody, ii) generated SDS-insoluble aggregates, iii) gave rise to bundles of elongated fibrils, and iv) displayed two additional bands at 1604 and 1656 cm−1 in FTIR spectroscopy. Although these were previously observed in other aggregated polyglutamine proteins, no one has assigned them unambiguously, yet. By H/D exchange experiments we show for the first time that they can be ascribed to glutamine side-chain hydrogen bonding, which is therefore the hallmark of irreversibly SDS-insoluble aggregated protein. FTIR spectra also showed that main-chain intermolecular hydrogen bonding preceded that of glutamine side-chains, which suggests that the former favors the latter by reorganizing backbone geometry
Infrared vibrational spectroscopy: a rapid and novel diagnostic and monitoring tool for cystinuria
Cystinuria is the commonest inherited cause of nephrolithiasis (~1% in adults; ~6% in children) and is the result of impaired cystine reabsorption in the renal proximal tubule. Cystine is poorly soluble in urine with a solubility of ~1 mM and can readily form microcrystals that lead to cystine stone formation, especially at low urine pH. Diagnosis of cystinuria is made typically by ion-exchange chromatography (IEC) detection and quantitation, which is slow, laboursome and costly. More rapid and frequent monitoring of urinary cystine concentration would significantly improve the diagnosis and clinical management of cystinuria. We used attenuated total reflection - Fourier transform infrared spectroscopy (ATR-FTIR) to detect and quantitate insoluble cystine in 22 cystinuric and 5 healthy control urine samples. Creatinine concentration was also determined by ATR-FTIR to adjust for urinary concentration/dilution. Urine was centrifuged, the insoluble fraction re-suspended in 5 μL water and dried on the ATR prism. Cystine was quantitated using its 1296 cm−1 absorption band and levels matched with parallel measurements made using IEC. ATR-FTIR afforded a rapid and inexpensive method of detecting and quantitating insoluble urinary cystine. This proof-of-concept study provides a basis for developing a high-throughput, cost-effective diagnostic method for cystinuria, and for point-of-care clinical monitoring
The Disulfide Bonds in Glycoprotein E2 of Hepatitis C Virus Reveal the Tertiary Organization of the Molecule
Hepatitis C virus (HCV), a major cause of chronic liver disease in humans, is the focus of intense research efforts worldwide. Yet structural data on the viral envelope glycoproteins E1 and E2 are scarce, in spite of their essential role in the viral life cycle. To obtain more information, we developed an efficient production system of recombinant E2 ectodomain (E2e), truncated immediately upstream its trans-membrane (TM) region, using Drosophila melanogaster cells. This system yields a majority of monomeric protein, which can be readily separated chromatographically from contaminating disulfide-linked aggregates. The isolated monomeric E2e reacts with a number of conformation-sensitive monoclonal antibodies, binds the soluble CD81 large external loop and efficiently inhibits infection of Huh7.5 cells by infectious HCV particles (HCVcc) in a dose-dependent manner, suggesting that it adopts a native conformation. These properties of E2e led us to experimentally determine the connectivity of its 9 disulfide bonds, which are strictly conserved across HCV genotypes. Furthermore, circular dichroism combined with infrared spectroscopy analyses revealed the secondary structure contents of E2e, indicating in particular about 28% β-sheet, in agreement with the consensus secondary structure predictions. The disulfide connectivity pattern, together with data on the CD81 binding site and reported E2 deletion mutants, enabled the threading of the E2e polypeptide chain onto the structural template of class II fusion proteins of related flavi- and alphaviruses. The resulting model of the tertiary organization of E2 gives key information on the antigenicity determinants of the virus, maps the receptor binding site to the interface of domains I and III, and provides insight into the nature of a putative fusogenic conformational change
Calcium Ions Promote Formation of Amyloid β-Peptide (1–40) Oligomers Causally Implicated in Neuronal Toxicity of Alzheimer's Disease
Amyloid β-peptide (Aβ) is directly linked to Alzheimer's disease (AD). In its monomeric form, Aβ aggregates to produce fibrils and a range of oligomers, the latter being the most neurotoxic. Dysregulation of Ca2+ homeostasis in aging brains and in neurodegenerative disorders plays a crucial role in numerous processes and contributes to cell dysfunction and death. Here we postulated that calcium may enable or accelerate the aggregation of Aβ. We compared the aggregation pattern of Aβ(1–40) and that of Aβ(1–40)E22G, an amyloid peptide carrying the Arctic mutation that causes early onset of the disease. We found that in the presence of Ca2+, Aβ(1–40) preferentially formed oligomers similar to those formed by Aβ(1–40)E22G with or without added Ca2+, whereas in the absence of added Ca2+ the Aβ(1–40) aggregated to form fibrils. Morphological similarities of the oligomers were confirmed by contact mode atomic force microscopy imaging. The distribution of oligomeric and fibrillar species in different samples was detected by gel electrophoresis and Western blot analysis, the results of which were further supported by thioflavin T fluorescence experiments. In the samples without Ca2+, Fourier transform infrared spectroscopy revealed conversion of oligomers from an anti-parallel β-sheet to the parallel β-sheet conformation characteristic of fibrils. Overall, these results led us to conclude that calcium ions stimulate the formation of oligomers of Aβ(1–40), that have been implicated in the pathogenesis of AD
A Major Role for Side-Chain Polyglutamine Hydrogen Bonding in Irreversible Ataxin-3 Aggregation
The protein ataxin-3 consists of an N-terminal globular Josephin domain (JD) and an unstructured C-terminal region containing a stretch of consecutive glutamines that triggers the neurodegenerative disorder spinocerebellar ataxia type 3, when it is expanded beyond a critical threshold. The disease results from misfolding and aggregation, although the pathway and structure of the aggregation intermediates are not fully understood. In order to provide insight into the mechanism of the process, we monitored the aggregation of a normal (AT3Q24) ataxin-3, an expanded (AT3Q55) ataxin-3, and the JD in isolation. We observed that all of them aggregated, although the latter did so at a much slower rate. Furthermore, the expanded AT3Q55 displayed a substantially different behavior with respect to the two other variants in that at the latest stages of the process it was the only one that did the following: i) lost its reactivity towards an anti-oligomer antibody, ii) generated SDS-insoluble aggregates, iii) gave rise to bundles of elongated fibrils, and iv) displayed two additional bands at 1604 and 1656 cm−1 in FTIR spectroscopy. Although these were previously observed in other aggregated polyglutamine proteins, no one has assigned them unambiguously, yet. By H/D exchange experiments we show for the first time that they can be ascribed to glutamine side-chain hydrogen bonding, which is therefore the hallmark of irreversibly SDS-insoluble aggregated protein. FTIR spectra also showed that main-chain intermolecular hydrogen bonding preceded that of glutamine side-chains, which suggests that the former favors the latter by reorganizing backbone geometry
Structure-Function Relations in Oxaloacetate Decarboxylase Complex. Fluorescence and Infrared Approaches to Monitor Oxomalonate and Na+ Binding Effect
ions across the membrane, which drives endergonic membrane reactions such as ATP synthesis, transport and motility. OAD is a membrane-bound enzyme composed of α, β and γ subunits. The α subunit contains the carboxyltransferase catalytic site. characteristic of a high content of α helix structures. Addition of oxomalonate induced a shift of the amide-I band of OAD toward higher wavenumbers, interpreted as a slight decrease of β sheet structures and a concomitant increase of α helix structures. Oxomalonate binding to αγand α subunits also provoked secondary structure variations, but these effects were negligible compared to OAD complex. alters the tryptophan environment of the β subunit, consistent with the function of these subunits within the enzyme complex. Formation of a complex between OAD and its substrates elicits structural changes in the α-helical as well as β-strand secondary structure elements
- …