24 research outputs found

    Biased gene conversion and GC-content evolution in the coding sequences of reptiles and vertebrates.

    Get PDF
    Mammalian and avian genomes are characterized by a substantial spatial heterogeneity of GC-content, which is often interpreted as reflecting the effect of local GC-biased gene conversion (gBGC), a meiotic repair bias that favors G and C over A and T alleles in high-recombining genomic regions. Surprisingly, the first fully sequenced nonavian sauropsid (i.e., reptile), the green anole Anolis carolinensis, revealed a highly homogeneous genomic GC-content landscape, suggesting the possibility that gBGC might not be at work in this lineage. Here, we analyze GC-content evolution at third-codon positions (GC3) in 44 vertebrates species, including eight newly sequenced transcriptomes, with a specific focus on nonavian sauropsids. We report that reptiles, including the green anole, have a genome-wide distribution of GC3 similar to that of mammals and birds, and we infer a strong GC3-heterogeneity to be already present in the tetrapod ancestor. We further show that the dynamic of coding sequence GC-content is largely governed by karyotypic features in vertebrates, notably in the green anole, in agreement with the gBGC hypothesis. The discrepancy between third-codon positions and noncoding DNA regarding GC-content dynamics in the green anole could not be explained by the activity of transposable elements or selection on codon usage. This analysis highlights the unique value of third-codon positions as an insertion/deletion-free marker of nucleotide substitution biases that ultimately affect the evolution of proteins

    Biased gene conversion and GC-content evolution in the coding sequences of reptiles and vertebrates.

    Get PDF
    Mammalian and avian genomes are characterized by a substantial spatial heterogeneity of GC-content, which is often interpreted as reflecting the effect of local GC-biased gene conversion (gBGC), a meiotic repair bias that favors G and C over A and T alleles in high-recombining genomic regions. Surprisingly, the first fully sequenced nonavian sauropsid (i.e., reptile), the green anole Anolis carolinensis, revealed a highly homogeneous genomic GC-content landscape, suggesting the possibility that gBGC might not be at work in this lineage. Here, we analyze GC-content evolution at third-codon positions (GC3) in 44 vertebrates species, including eight newly sequenced transcriptomes, with a specific focus on nonavian sauropsids. We report that reptiles, including the green anole, have a genome-wide distribution of GC3 similar to that of mammals and birds, and we infer a strong GC3-heterogeneity to be already present in the tetrapod ancestor. We further show that the dynamic of coding sequence GC-content is largely governed by karyotypic features in vertebrates, notably in the green anole, in agreement with the gBGC hypothesis. The discrepancy between third-codon positions and noncoding DNA regarding GC-content dynamics in the green anole could not be explained by the activity of transposable elements or selection on codon usage. This analysis highlights the unique value of third-codon positions as an insertion/deletion-free marker of nucleotide substitution biases that ultimately affect the evolution of proteins

    Consequences of Asexuality in Natural Populations: Insights from Stick Insects.

    Get PDF
    Recombination is a fundamental process with significant impacts on genome evolution. Predicted consequences of the loss of recombination include a reduced effectiveness of selection, changes in the amount of neutral polymorphisms segregating in populations, and an arrest of GC-biased gene conversion. Although these consequences are empirically well documented for nonrecombining genome portions, it remains largely unknown if they extend to the whole genome scale in asexual organisms. We identify the consequences of asexuality using de novo transcriptomes of five independently derived, obligately asexual lineages of stick insects, and their sexual sister-species. We find strong evidence for higher rates of deleterious mutation accumulation, lower levels of segregating polymorphisms and arrested GC-biased gene conversion in asexuals as compared with sexuals. Taken together, our study conclusively shows that predicted consequences of genome evolution under asexuality can indeed be found in natural populations

    Fast and Robust Characterization of Time-Heterogeneous Sequence Evolutionary Processes Using Substitution Mapping

    Get PDF
    Genes and genomes do not evolve similarly in all branches of the tree of life. Detecting and characterizing the heterogeneity in time, and between lineages, of the nucleotide (or amino acid) substitution process is an important goal of current molecular evolutionary research. This task is typically achieved through the use of non-homogeneous models of sequence evolution, which being highly parametrized and computationally-demanding are not appropriate for large-scale analyses. Here we investigate an alternative methodological option based on probabilistic substitution mapping. The idea is to first reconstruct the substitutional history of each site of an alignment under a homogeneous model of sequence evolution, then to characterize variations in the substitution process across lineages based on substitution counts. Using simulated and published datasets, we demonstrate that probabilistic substitution mapping is robust in that it typically provides accurate reconstruction of sequence ancestry even when the true process is heterogeneous, but a homogeneous model is adopted. Consequently, we show that the new approach is essentially as efficient as and extremely faster than (up to 25 000 times) existing methods, thus paving the way for a systematic survey of substitution process heterogeneity across genes and lineages

    Optimization of sequence alignments according to the number of sequences vs. number of sites trade-off

    No full text
    Background: Comparative analysis of homologous sequences enables the understanding of evolutionary patterns at the molecular level, unraveling the functional constraints that shaped the underlying genes. Bioinformatic pipelines for comparative sequence analysis typically include procedures for (i) alignment quality assessment and (ii) control of sequence redundancy. An additional, underassessed step is the control of the amount and distribution of missing data in sequence alignments. While the number of sequences available for a given gene typically increases with time, the site-specific coverage of each alignment position remains highly variable because of differences in sequencing and annotation quality, or simply because of biological variation. For any given alignment-based analysis, the selection of sequences thus defines a trade-off between the species representation and the quantity of sites with sufficient coverage to be included in the subsequent analyses. Results: We introduce an algorithm for the optimization of sequence alignments according to the number of sequences vs. number of sites trade-off. The algorithm uses a guide tree to compute scores for each bipartition of the alignment, allowing the recursive selection of sequence subsets with optimal combinations of sequence and site numbers. By applying our methods to two large data sets of several thousands of gene families, we show that significant site-specific coverage increases can be achieved while controlling for the species representation. Conclusions: The algorithm introduced in this work allows the control of the distribution of missing data in any sequence alignment by removing sequences to increase the number of sites with a defined minimum coverage. We advocate that our missing data optimization procedure in an important step which should be considered in comparative analysis pipelines, together with alignment quality assessment and control of sampled diversity. An open source C++ implementation is available at http://bioweb.me/physamp

    Codon Usage Bias in Animals: Disentangling the Effects of Natural Selection, Effective Population Size, and GC-Biased Gene Conversion.

    No full text
    Selection on codon usage bias is well documented in a number of microorganisms. Whether codon usage is also generally shaped by natural selection in large organisms, despite their relatively small effective population size (Ne), is unclear. In animals, the population genetics of codon usage bias has only been studied in a handful of model organisms so far, and can be affected by confounding, nonadaptive processes such as GC-biased gene conversion and experimental artefacts. Using population transcriptomics data, we analyzed the relationship between codon usage, gene expression, allele frequency distribution, and recombination rate in 30 nonmodel species of animals, each from a different family, covering a wide range of effective population sizes. We disentangled the effects of translational selection and GC-biased gene conversion on codon usage by separately analyzing GC-conservative and GC-changing mutations. We report evidence for effective translational selection on codon usage in large-Ne species of animals, but not in small-Ne ones, in agreement with the nearly neutral theory of molecular evolution. C- and T-ending codons tend to be preferred over synonymous G- and A-ending ones, for reasons that remain to be determined. In contrast, we uncovered a conspicuous effect of GC-biased gene conversion, which is widespread in animals and the main force determining the fate of AT↔GC mutations. Intriguingly, the strength of its effect was uncorrelated with Ne

    Population genomics of sexual and asexual lineages in fissiparous ribbon worms (Lineus, Nemertea): hybridization, polyploidy and the Meselson effect

    No full text
    International audienceComparative population genetics in asexual vs. sexual species offers the opportunity to investigate the impact of asexuality on genome evolution. Here, we analyse coding sequence polymorphism and divergence patterns in the fascinating Lineus ribbon worms, a group of marine, carnivorous nemerteans with unusual regeneration abilities, and in which asexual reproduction by fissiparity is documented. The population genomics of the fissiparous L. pseudolacteus is characterized by an extremely high level of heterozygosity and unexpectedly elevated πN /πS ratio, in apparent agreement with theoretical expectations under clonal evolution. Analysis of among-species allele sharing and read-count distribution, however, reveals that L. pseudolacteus is a triploid hybrid between Atlantic populations of L. sanguineus and L. lacteus. We model and quantify the relative impact of hybridity, polyploidy and asexuality on molecular variation patterns in L. pseudolacteus and conclude that (i) the peculiarities of L. pseudolacteus population genomics result in the first place from hybridization and (ii) the accumulation of new mutations through the Meselson effect is more than compensated by processes of heterozygosity erosion, such as gene conversion or gene copy loss. This study illustrates the complexity of the evolutionary processes associated with asexuality and identifies L. pseudolacteus as a promising model to study the first steps of polyploid genome evolution in an asexual context
    corecore