729 research outputs found

    The question of declining sperm density revisited: an analysis of 101 studies published 1934-1996.

    Get PDF
    In 1992 Carlsen et al. reported a significant global decline in sperm density between 1938 and 1990 [Evidence for Decreasing Quality of Semen during Last 50 Years. Br Med J 305:609-613 (1992)]. We subsequently published a reanalysis of the studies included by Carlsen et al. [Swan et al. Have Sperm Densities Declined? A Reanalysis of Global Trend Data. Environ Health Perspect 105:1228-1232 (1997)]. In that analysis we found significant declines in sperm density in the United States and Europe/Australia after controlling for abstinence time, age, percent of men with proven fertility, and specimen collection method. The declines in sperm density in the United States (approximately 1.5%/year) and Europe/Australia (approximately 3%/year) were somewhat greater than the average decline reported by Carlsen et al. (approximately 1%/year). However, we found no decline in sperm density in non-Western countries, for which data were very limited. In the current study, we used similar methods to analyze an expanded set of studies. We added 47 English language studies published in 1934-1996 to those we had analyzed previously. The average decline in sperm count was virtually unchanged from that reported previously by Carlsen et al. (slope = -0.94 vs. -0.93). The slopes in the three geographic groupings were also similar to those we reported earlier. In North America, the slope was somewhat less than the slope we had found for the United States (slope = -0.80; 95% confidence interval (CI), -1.37--0.24). Similarly, the decline in Europe (slope = -2.35; CI, -3.66--1.05) was somewhat less than reported previously. As before, studies from other countries showed no trend (slope = -0.21; CI, -2.30-1.88). These results are consistent with those of Carlsen et al. and our previous results, suggesting that the reported trends are not dependent on the particular studies included by Carlsen et al. and that the observed trends previously reported for 1938-1990 are also seen in data from 1934-1996

    Weed Control for Reduced Tillage Systems

    Get PDF
    PDF pages:

    Three-dimensional segmentation of three-dimensional ultrasound carotid atherosclerosis using sparse field level sets.

    Get PDF
    PURPOSE: Three-dimensional ultrasound (3DUS) vessel wall volume (VWV) provides a 3D measurement of carotid artery wall remodeling and atherosclerotic plaque and is sensitive to temporal changes of carotid plaque burden. Unfortunately, although 3DUS VWV provides many advantages compared to measurements of arterial wall thickening or plaque alone, it is still not widely used in research or clinical practice because of the inordinate amount of time required to train observers and to generate 3DUS VWV measurements. In this regard, semiautomated methods for segmentation of the carotid media-adventitia boundary (MAB) and the lumen-intima boundary (LIB) would greatly improve the time to train observers and for them to generate 3DUS VWV measurements with high reproducibility. METHODS: The authors describe a 3D algorithm based on a modified sparse field level set method for segmenting the MAB and LIB of the common carotid artery (CCA) from 3DUS images. To the authors\u27 knowledge, the proposed algorithm is the first direct 3D segmentation method, which has been validated for segmenting both the carotid MAB and the LIB from 3DUS images for the purpose of computing VWV. Initialization of the algorithm requires the observer to choose anchor points on each boundary on a set of transverse slices with a user-specified interslice distance (ISD), in which larger ISD requires fewer user interactions than smaller ISD. To address the challenges of the MAB and LIB segmentations from 3DUS images, the authors integrated regional- and boundary-based image statistics, expert initializations, and anatomically motivated boundary separation into the segmentation. The MAB is segmented by incorporating local region-based image information, image gradients, and the anchor points provided by the observer. Moreover, a local smoothness term is utilized to maintain the smooth surface of the MAB. The LIB is segmented by constraining its evolution using the already segmented surface of the MAB, in addition to the global region-based information and the anchor points. The algorithm-generated surfaces were sliced and evaluated with respect to manual segmentations on a slice-by-slice basis using 21 3DUS images. RESULTS: The authors used ISD of 1, 2, 3, 4, and 10 mm for algorithm initialization to generate segmentation results. The algorithm-generated accuracy and intraobserver variability results are comparable to the previous methods, but with fewer user interactions. For example, for the ISD of 3 mm, the algorithm yielded an average Dice coefficient of 94.4% ± 2.2% and 90.6% ± 5.0% for the MAB and LIB and the coefficient of variation of 6.8% for computing the VWV of the CCA, while requiring only 1.72 min (vs 8.3 min for manual segmentation) for a 3DUS image. CONCLUSIONS: The proposed 3D semiautomated segmentation algorithm yielded high-accuracy and high-repeatability, while reducing the expert interaction required for initializing the algorithm than the previous 2D methods

    The effect of coastal landform development on decadal- to millennial-scale longshore sediment fluxes: Evidence from the Holocene evolution of the central mid-Atlantic coast, USA - Sediment Core and Chronology Data

    Get PDF
    These data are sediment core, radiocarbon, and optically stimulated luminescence (OSL) data from the barrier islands and backbarrier lagoons, bays, and marshes of Assateague Island (VA, USA), Chincoteague Island (VA, USA), and Wallops Island (VA, USA). Vibracore data from Tom’s Cove, a backbarrier bay, were collected using a vibracore system with the ability to core through a ‘moonhole’ on a flat bottom boat. Geoprobe cores were collected using a track-mounted 66DT Geoprobe direct-push drill rig. Select samples from the sediment cores (associated with figures and tables in Shawler et al., 2021) were analyzed using a Beckman-Coulter Laser Diffraction Particle Size Analyzer (LS 13 320 Aqueous Liquid Module) with an applied calculation model that uses Fraunhöfer theory. Data are available as Microsoft Excel Workbooks and can be opened using Excel or numerous free and open sources products such as Google Sheets. Each sediment core data spreadsheet contains a “READ ME” tab with additional detail. The full OSL report from co-author Sebastien Huot is also included and can be accessed with a PDF reader

    Automated three-component synthesis of a library of γ-lactams

    Get PDF
    A three-component method for the synthesis of γ-lactams from commercially available maleimides, aldehydes, and amines was adapted to parallel library synthesis. Improvements to the chemistry over previous efforts include the optimization of the method to a one-pot process, the management of by-products and excess reagents, the development of an automated parallel sequence, and the adaption of the method to permit the preparation of enantiomerically enriched products. These efforts culminated in the preparation of a library of 169 γ-lactams

    Unit 8-Growing Small Grain

    Get PDF
    This archival publication may not reflect current scientific knowledge or recommendations. Current information available from the University of Minnesota Extension: https://www.extension.umn.edu

    Using the soil nitrate test for corn in Minnesota

    Get PDF
    1 online resource (PDF, 4 pages)This archival publication may not reflect current scientific knowledge or recommendations. Current information available from the University of Minnesota Extension: https://www.extension.umn.edu

    Unit 5-Selecting and Managing Forage Crops

    Get PDF
    This archival publication may not reflect current scientific knowledge or recommendations. Current information available from the University of Minnesota Extension: https://www.extension.umn.edu

    Unit 2-Soil Acidity and the Importance of Liming

    Get PDF
    This archival publication may not reflect current scientific knowledge or recommendations. Current information available from the University of Minnesota Extension: https://www.extension.umn.edu
    corecore