82 research outputs found

    Scanning electron microscope/energy dispersive x ray analysis of impact residues in LDEF tray clamps

    Get PDF
    Detailed optical scanning of tray clamps is being conducted in the Facility for the Optical Inspection of Large Surfaces at JSC to locate and document impacts as small as 40 microns in diameter. Residues from selected impacts are then being characterized by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis at CNES. Results from this analysis will be the initial step to classifying projectile residues into specific sources

    Helium condensation in aerogel: avalanches and disorder-induced phase transition

    Full text link
    We present a detailed numerical study of the elementary condensation events (avalanches) associated to the adsorption of 4^4He in silica aerogels. We use a coarse-grained lattice-gas description and determine the nonequilibrium behavior of the adsorbed gas within a local mean-field analysis, neglecting thermal fluctuations and activated processes. We investigate the statistical properties of the avalanches, such as their number, size and shape along the adsorption isotherms as a function of gel porosity, temperature, and chemical potential. Our calculations predict the existence of a line of critical points in the temperature-porosity diagram where the avalanche size distribution displays a power-law behavior and the adsorption isotherms have a universal scaling form. The estimated critical exponents seem compatible with those of the field-driven Random Field Ising Model at zero temperature.Comment: 16 pages, 14 figure

    Hysteresis and Avalanches in the Random Anisotropy Ising Model

    Get PDF
    The behaviour of the Random Anisotropy Ising model at T=0 under local relaxation dynamics is studied. The model includes a dominant ferromagnetic interaction and assumes an infinite anisotropy at each site along local anisotropy axes which are randomly aligned. Two different random distributions of anisotropy axes have been studied. Both are characterized by a parameter that allows control of the degree of disorder in the system. By using numerical simulations we analyze the hysteresis loop properties and characterize the statistical distribution of avalanches occuring during the metastable evolution of the system driven by an external field. A disorder-induced critical point is found in which the hysteresis loop changes from displaying a typical ferromagnetic magnetization jump to a rather smooth loop exhibiting only tiny avalanches. The critical point is characterized by a set of critical exponents, which are consistent with the universal values proposed from the study of other simpler models.Comment: 40 pages, 21 figures, Accepted for publication in Phys. Rev.

    Power spectra of self-organized critical sandpiles

    Full text link
    We analyze the power spectra of avalanches in two classes of self-organized critical sandpile models, the Bak-Tang-Wiesenfeld model and the Manna model. We show that these decay with a 1/fα1/f^\alpha power law, where the exponent value α\alpha is significantly smaller than 2 and equals the scaling exponent relating the avalanche size to its duration. We discuss the basic ingredients behind this result, such as the scaling of the average avalanche shape.Comment: 7 pages, 3 figures, submitted to JSTA

    Rayleigh loops in the random-field Ising model on the Bethe lattice

    Get PDF
    We analyze the demagnetization properties of the random-field Ising model on the Bethe lattice focusing on the beahvior near the disorder induced phase transition. We derive an exact recursion relation for the magnetization and integrate it numerically. Our analysis shows that demagnetization is possible only in the continous high disorder phase, where at low field the loops are described by the Rayleigh law. In the low disorder phase, the saturation loop displays a discontinuity which is reflected by a non vanishing magnetization m_\infty after a series of nested loops. In this case, at low fields the loops are not symmetric and the Rayleigh law does not hold.Comment: 8pages, 6 figure

    Simple model of big-crunch/big-bang transition

    Full text link
    We present classical and quantum dynamics of a test particle in the compactified Milne space. Background spacetime includes one compact space dimension undergoing contraction to a point followed by expansion. Quantization consists in finding a self-adjoint representation of the algebra of particle observables. Our model offers some insight into the nature of the cosmic singularity.Comment: 17 pages, no figures, RevTeX4, accepted for publication in Class. Quantum Gra

    Scaling of avalanche queues in directed dissipative sandpiles

    Full text link
    We simulate queues of activity in a directed sandpile automaton in 1+1 dimensions by adding grains at the top row with driving rate 0<r10 < r \leq 1. The duration of elementary avalanches is exactly described by the distribution P1(t)t3/2exp(1/Lc)P_1(t) \sim t^{-3/2}\exp{(-1/L_c)}, limited either by the system size or by dissipation at defects Lc=min(L,ξ)L_c= \min (L,\xi). Recognizing the probability P1P_1 as a distribution of service time of jobs arriving at a server with frequency rr, the model represents a new example of the server queue in the queue theory. We study numerically and analytically the tail behavior of the distributions of busy periods and energy dissipated in the queue and the probability of an infinite queue as a function of driving rate.Comment: 11 pages, 9 figures; To appear in Phys. Rev.

    D-instantons and Closed String Tachyons in Misner Space

    Full text link
    We investigate closed string tachyon condensation in Misner space, a toy model for big bang universe. In Misner space, we are able to condense tachyonic modes of closed strings in the twisted sectors, which is supposed to remove the big bang singularity. In order to examine this, we utilize D-instanton as a probe. First, we study general properties of D-instanton by constructing boundary state and effective action. Then, resorting to these, we are able to show that tachyon condensation actually deforms the geometry such that the singularity becomes milder.Comment: 24 pages, 1 figure, minor change

    Gravitational Radiation from Travelling Waves on D-Strings

    Full text link
    Boundary states that preserve supersymmetry are constructed for fractional D-strings with travelling waves on a C3/Z2×Z2{\bf C}^3/ {{\bf Z}_2\times {\bf Z}_2} orbifold. The gravitational radiation emitted between two D-strings with antiparallel travelling waves is calculated.Comment: improvements and correction

    Low field hysteresis in disordered ferromagnets

    Get PDF
    We analyze low field hysteresis close to the demagnetized state in disordered ferromagnets using the zero temperature random-field Ising model. We solve the demagnetization process exactly in one dimension and derive the Rayleigh law of hysteresis. The initial susceptibility a and the hysteretic coefficient b display a peak as a function of the disorder width. This behavior is confirmed by numerical simulations d=2,3 showing that in limit of weak disorder demagnetization is not possible and the Rayleigh law is not defined. These results are in agreement with experimental observations on nanocrystalline magnetic materials.Comment: Extended version, 18 pages, 5 figures, to appear in Phys. Rev.
    corecore