787 research outputs found
Parallel Exhaustive Search without Coordination
We analyze parallel algorithms in the context of exhaustive search over
totally ordered sets. Imagine an infinite list of "boxes", with a "treasure"
hidden in one of them, where the boxes' order reflects the importance of
finding the treasure in a given box. At each time step, a search protocol
executed by a searcher has the ability to peek into one box, and see whether
the treasure is present or not. By equally dividing the workload between them,
searchers can find the treasure times faster than one searcher.
However, this straightforward strategy is very sensitive to failures (e.g.,
crashes of processors), and overcoming this issue seems to require a large
amount of communication. We therefore address the question of designing
parallel search algorithms maximizing their speed-up and maintaining high
levels of robustness, while minimizing the amount of resources for
coordination. Based on the observation that algorithms that avoid communication
are inherently robust, we analyze the best running time performance of
non-coordinating algorithms. Specifically, we devise non-coordinating
algorithms that achieve a speed-up of for two searchers, a speed-up of
for three searchers, and in general, a speed-up of
for any searchers. Thus, asymptotically, the speed-up is only four
times worse compared to the case of full-coordination, and our algorithms are
surprisingly simple and hence applicable. Moreover, these bounds are tight in a
strong sense as no non-coordinating search algorithm can achieve better
speed-ups. Overall, we highlight that, in faulty contexts in which coordination
between the searchers is technically difficult to implement, intrusive with
respect to privacy, and/or costly in term of resources, it might well be worth
giving up on coordination, and simply run our non-coordinating exhaustive
search algorithms
Local regularity for parabolic nonlocal operators
Weak solutions to parabolic integro-differential operators of order are studied. Local a priori estimates of H\"older norms and
a weak Harnack inequality are proved. These results are robust with respect to
. In this sense, the presentation is an extension of Moser's
result in 1971.Comment: 31 pages, 3 figure
Well-posedness for a class of nonlinear degenerate parabolic equations
In this paper we obtain well-posedness for a class of semilinear weakly
degenerate reaction-diffusion systems with Robin boundary conditions. This
result is obtained through a Gagliardo-Nirenberg interpolation inequality and
some embedding results for weighted Sobolev spaces
Fluid Flows of Mixed Regimes in Porous Media
In porous media, there are three known regimes of fluid flows, namely,
pre-Darcy, Darcy and post-Darcy. Because of their different natures, these are
usually treated separately in literature. To study complex flows when all three
regimes may be present in different portions of a same domain, we use a single
equation of motion to unify them. Several scenarios and models are then
considered for slightly compressible fluids. A nonlinear parabolic equation for
the pressure is derived, which is degenerate when the pressure gradient is
either small or large. We estimate the pressure and its gradient for all time
in terms of initial and boundary data. We also obtain their particular bounds
for large time which depend on the asymptotic behavior of the boundary data but
not on the initial one. Moreover, the continuous dependence of the solutions on
initial and boundary data, and the structural stability for the equation are
established.Comment: 33 page
Riesz potentials and nonlinear parabolic equations
The spatial gradient of solutions to nonlinear degenerate parabolic equations
can be pointwise estimated by the caloric Riesz potential of the right hand
side datum, exactly as in the case of the heat equation. Heat kernels type
estimates persist in the nonlinear cas
On a Cahn--Hilliard--Darcy system for tumour growth with solution dependent source terms
We study the existence of weak solutions to a mixture model for tumour growth
that consists of a Cahn--Hilliard--Darcy system coupled with an elliptic
reaction-diffusion equation. The Darcy law gives rise to an elliptic equation
for the pressure that is coupled to the convective Cahn--Hilliard equation
through convective and source terms. Both Dirichlet and Robin boundary
conditions are considered for the pressure variable, which allows for the
source terms to be dependent on the solution variables.Comment: 18 pages, changed proof from fixed point argument to Galerkin
approximatio
Existence of Ricci flows of incomplete surfaces
We prove a general existence result for instantaneously complete Ricci flows
starting at an arbitrary Riemannian surface which may be incomplete and may
have unbounded curvature. We give an explicit formula for the maximal existence
time, and describe the asymptotic behaviour in most cases.Comment: 20 pages; updated to reflect galley proof correction
Rhodopsin Expression Level Affects Rod Outer Segment Morphology and Photoresponse Kinetics
Background: The retinal rod outer segment is a sensory cilium that is specialized for the conversion of light into an electrical signal. Within the cilium, up to several thousand membranous disks contain as many as a billion copies of rhodopsin for efficient photon capture. Disks are continually turned over, requiring the daily synthesis of a prodigious amount of rhodopsin. To promote axial diffusion in the aqueous cytoplasm, the disks have one or more incisures. Across vertebrates, the range of disk diameters spans an order of magnitude, and the number and length of the incisures vary considerably, but the mechanisms controlling disk architecture are not well understood. The finding that transgenic mice overexpressing rhodopsin have enlarged disks lacking an incisure prompted us to test whether lowered rhodopsin levels constrain disk assembly. Methodology/Principal Findings: The structure and function of rods from hemizygous rhodopsin knockout (R+/−) mice with decreased rhodopsin expression were analyzed by transmission electron microscopy and single cell recording. R+/− rods were structurally altered in three ways: disk shape changed from circular to elliptical, disk surface area decreased, and the single incisure lengthened to divide the disk into two sections. Photocurrent responses to flashes recovered more rapidly than normal. A spatially resolved model of phototransduction indicated that changes in the packing densities of rhodopsin and other transduction proteins were responsible. The decrease in aqueous outer segment volume and the lengthened incisure had only minor effects on photon response amplitude and kinetics. Conclusions/Significance: Rhodopsin availability limits disk assembly and outer segment girth in normal rods. The incisure may buffer the supply of structural proteins needed to form larger disks. Decreased rhodopsin level accelerated photoresponse kinetics by increasing the rates of molecular collisions on the membrane. Faster responses, together with fewer rhodopsins, combine to lower overall sensitivity of R+/− rods to light
Self-similar extinction for a diffusive Hamilton-Jacobi equation with critical absorption
International audienceThe behavior near the extinction time is identified for non-negative solutions to the diffusive Hamilton-Jacobi equation with critical gradient absorption ∂_t u − ∆_p u + |∇u|^{p−1} = 0 in (0, ∞) × R^N , and fast diffusion 2N/(N + 1) < p < 2. Given a non-negative and radially symmetric initial condition with a non-increasing profile which decays sufficiently fast as |x| → ∞, it is shown that the corresponding solution u to the above equation approaches a uniquely determined separate variable solution of the form U (t, x) = (T_e − t)^{1/(2−p)} f_* (|x|), (t, x) ∈ (0, T_e) × R^N , as t → T_e , where T_e denotes the finite extinction time of u. A cornerstone of the convergence proof is an underlying variational structure of the equation. Also, the selected profile f_* is the unique non-negative solution to a second order ordinary differential equation which decays exponentially at infinity. A complete classification of solutions to this equation is provided, thereby describing all separate variable solutions of the original equation. One important difficulty in the uniqueness proof is that no monotonicity argument seems to be available and it is overcome by the construction of an appropriate Pohozaev functional
On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis
In this article we deal with a class of strongly coupled parabolic systems
that encompasses two different effects: degenerate diffusion and chemotaxis.
Such classes of equations arise in the mesoscale level modeling of biomass
spreading mechanisms via chemotaxis. We show the existence of an exponential
attractor and, hence, of a finite-dimensional global attractor under certain
'balance conditions' on the order of the degeneracy and the growth of the
chemotactic function
- …
