638 research outputs found

    Related studies to cathodic protection of reinforced concrete structures (FHWA-OK-83-06)

    Get PDF
    Cathodic protection of steel in portland cement concrete requires information concerning several different areas. This report describes studies which were pointed toward developing an understanding of several of these. A study of making an asphaltic concrete conductive was accomplished using coke breeze mixed with asphalt and aggregate. Mixes containing 45% coke breeze, 7-11% asphalt and the remainder a standard aggregate were found to be appropriate for conductive layers for cathodic protection. It was found possible to determine corrosion rates electrochemically using linear polarization. This laboratory technique gave corrosion rates similar to values obtained in other laboratories using other techniques. Testing in the laboratory and bridge decks of molybdneum-molybdneum oxide electrodes indicated these would be useful as embeddable reference electrodes in concrete. Silver-silver chloride electrodes were not found to be stable in this application. These electrochemical half-cells, Mo/MoO should prove to be useful for cathodic protection systems which require controlled potentials. Reinforced concrete cylinders were exposed to cathodic protection level currents for five years. Pullout strengths and concentrations of sodium, potassium and chloride ions were determined throughout this time period. These data indicate the cathodic protection currents reduce the bond strength of the steel and concrete after about 3.5 years, due to accumulation of sodium and potassium at the interface between steel and concrete.Final ReportN

    Nuclear classical dynamics of H2_2 in intense laser field

    Full text link
    In the first part of this paper, the different distinguishable pathways and regions of the single and sequential double ionization are determined and discussed. It is shown that there are two distinguishable pathways for the single ionization and four distinct pathways for the sequential double ionization. It is also shown that there are two and three different regions of space which are related to the single and double ionization respectively. In the second part of the paper, the time dependent Schr\"{o}dinger and Newton equations are solved simultaneously for the electrons and the nuclei of H2_2 respectively. The electrons and nuclei dynamics are separated on the base of the adiabatic approximation. The soft-core potential is used to model the electrostatic interaction between the electrons and the nuclei. A variety of wavelengths (390 nm, 532 nm and 780 nm) and intensities (5×10145\times10^{14} Wcm2Wcm^{-2} and 5×1015 5\times10^{15} Wcm2Wcm^{-2}) of the ultrashort intense laser pulses with a sinus second order envelope function are used. The behaviour of the time dependent classical nuclear dynamics in the absence and present of the laser field are investigated and compared. In the absence of the laser field, there are three distinct sections for the nuclear dynamics on the electronic ground state energy curve. The bond hardening phenomenon does not appear in this classical nuclear dynamics simulation.Comment: 16 pages, 7 figure

    Validating circular performance indicators: The interface between circular economy and stakeholders

    Get PDF
    Copyright: © 2021 by the authors. The development and application of appropriate Circular Economy indicators is an issue that concerns both the scientific and the business community, as well as decision makers. The existing gap between research, policy and practice could be bridged by using a dynamic indicators selection approach that combines both expert and participatory practices. This study aims to develop such a novel approach for the selection of indicators based on views and needs of practitioners, whilst considering the complex interdependencies of the indicators and determining their importance. Twenty circularity indicators for the Water-Energy-Food-Ecosystems nexus are selected and ranked by different stakeholders. The interrelationships of the indicators are identified using the Interpretive Structural Model, resulting in six levels of importance. Cross-impact matrix multiplication applied to classification (MICMAC) analysis further enabled the classification of the twenty indicators into four categories based on their driving and dependence power. The results indicate that seven indicators— one related to regeneration of natural environment principle, four related to keep resources in use, and two related to design out negative externalities—are the driving indicators to Circular Economy. The approach can be applied to other sets of indicators as well, enabling their prioritization and implementation with other systems.COST Action CA17133 Circular City; Horizon 2020 innovation projects HYDROUSA (grant agreement no. 776643) and HOUSEFUL (grantagreement no. 776708)

    Space Telescope and Optical Reverberation Mapping Project. XII. Broad-line Region Modeling of NGC 5548

    Get PDF
    We present geometric and dynamical modeling of the broad line region (BLR) for the multi-wavelength reverberation mapping campaign focused on NGC 5548 in 2014. The data set includes photometric and spectroscopic monitoring in the optical and ultraviolet, covering the Hβ, C iv, and Ly broad emission lines. We find an extended disk-like Hβ BLR with a mixture of near-circular and outflowing gas trajectories, while the C iv and Ly BLRs are much less extended and resemble shell-like structures. There is clear radial structure in the BLR, with C iv and Ly emission arising at smaller radii than the Hβ emission. Using the three lines, we make three independent black hole mass measurements, all of which are consistent. Combining these results gives a joint inference of . We examine the effect of using the V band instead of the UV continuum light curve on the results and find a size difference that is consistent with the measured UV-optical time lag, but the other structural and kinematic parameters remain unchanged, suggesting that the V band is a suitable proxy for the ionizing continuum when exploring the BLR structure and kinematics. Finally, we compare the Hβ results to similar models of data obtained in 2008 when the active galactic nucleus was at a lower luminosity state. We find that the size of the emitting region increased during this time period, but the geometry and black hole mass remained unchanged, which confirms that the BLR kinematics suitably gauge the gravitational field of the central black hole

    Space Telescope and Optical Reverberation Mapping project. XI. Disk-wind characteristics and contributions to the very broad emission lines of NGC 5548

    Get PDF
    Funding: Support for HST program number GO-13330 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. We thank NSF (1816537, 1910687), NASA (17-ATP17-0141, 19-ATP19-0188), and STScI (HST-AR-15018, HST-AR-14556). MC acknowledges support from NASA through STScI grant HST-AR-14556.001-Aand NASA grant 19-ATP19-0188, and also support from National Science Foundation through grant AST-1910687.M.D. and G.F. and F. G. acknowledge support from the NSF (AST-1816537), NASA (ATP 17-0141), and STScI (HST-AR-13914, HST-AR-15018), and the Huffaker Scholarship. M.M. is supported by the Netherlands Organization for Scientific Research (NWO) through the Innovational Research Incentives Scheme Vidi grant 639.042.525. J.M.G. gratefully acknowledges support from NASA under the ADAP award 80NSSC17K0126. MV gratefully acknowledges support from the Independent Research Fund Denmark via grant number DFF 8021-00130.In 2014 the NGC 5548 Space Telescope and Optical Reverberation Mapping campaign discovered a two-month anomaly when variations in the absorption and emission lines decorrelated from continuum variations. During this time the soft X-ray part of the intrinsic spectrum had been strongly absorbed by a line-of-sight (LOS) obscurer, which was interpreted as the upper part of a disk wind. Our first paper showed that changes in the LOS obscurer produces the decorrelation between the absorption lines and the continuum. A second study showed that the base of the wind shields the broad emission-line region (BLR), leading to the emission-line decorrelation. In that study, we proposed the wind is normally transparent with no effect on the spectrum. Changes in the wind properties alter its shielding and affect the spectral energy distribution (SED) striking the BLR, producing the observed decorrelations. In this work we investigate the impact of a translucent wind on the emission lines. We simulate the obscuration using XMM-Newton, NuSTAR, and Hubble Space Telescope observations to determine the physical characteristics of the wind. We find that a translucent wind can contribute a part of the He ii and Fe Kα emission. It has a modest optical depth to electron scattering, which explains the fainter far-side emission in the observed velocity-delay maps. The wind produces the very broad base seen in the UV emission lines and may also be present in the Fe Kα line. Our results highlight the importance of accounting for the effects of such winds in the analysis of the physics of the central engine.Publisher PDFPeer reviewe

    Space Telescope and Optical Reverberation Mapping Project. XII. broad-line region modeling of NGC 5548.

    Get PDF
    We present geometric and dynamical modeling of the broad line region (BLR) for the multi-wavelength reverberation mapping campaign focused on NGC 5548 in 2014. The data set includes photometric and spectroscopic monitoring in the optical and ultraviolet, covering the Hβ, C iv, and Lyα broad emission lines. We find an extended disk-like Hβ BLR with a mixture of near-circular and outflowing gas trajectories, while the C iv and Lyα BLRs are much less extended and resemble shell-like structures. There is clear radial structure in the BLR, with C iv and Lyα emission arising at smaller radii than the Hβ emission. Using the three lines, we make three independent black hole mass measurements, all of which are consistent. Combining these results gives a joint inference of log10(MBH/M)=7.640.18+0.21{\mathrm{log}}_{10}({M}_{\mathrm{BH}}/{M}_{\odot })={7.64}_{-0.18}^{+0.21}. We examine the effect of using the V band instead of the UV continuum light curve on the results and find a size difference that is consistent with the measured UV–optical time lag, but the other structural and kinematic parameters remain unchanged, suggesting that the V band is a suitable proxy for the ionizing continuum when exploring the BLR structure and kinematics. Finally, we compare the Hβ results to similar models of data obtained in 2008 when the active galactic nucleus was at a lower luminosity state. We find that the size of the emitting region increased during this time period, but the geometry and black hole mass remained unchanged, which confirms that the BLR kinematics suitably gauge the gravitational field of the central black hole

    AGN STORM 2. I. First results: A Change in the Weather of Mrk 817

    Get PDF
    We present the first results from the ongoing, intensive, multiwavelength monitoring program of the luminous Seyfert 1 galaxy Mrk 817. While this active galactic nucleus was, in part, selected for its historically unobscured nature, we discovered that the X-ray spectrum is highly absorbed, and there are new blueshifted, broad, and narrow UV absorption lines, which suggest that a dust-free, ionized obscurer located at the inner broad-line region partially covers the central source. Despite the obscuration, we measure UV and optical continuum reverberation lags consistent with a centrally illuminated Shakura–Sunyaev thin accretion disk, and measure reverberation lags associated with the optical broad-line region, as expected. However, in the first 55 days of the campaign, when the obscuration was becoming most extreme, we observe a de-coupling of the UV continuum and the UV broad emission-line variability. The correlation recovered in the next 42 days of the campaign, as Mrk 817 entered a less obscured state. The short C IV and Lyα lags suggest that the accretion disk extends beyond the UV broad-line region. Unified

    Search for Higgs bosons produced via vector-boson fusion and decaying into bottom quark pairs in √s =13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the bb ¯ decay of the Standard Model Higgs boson produced through vector-boson fusion is presented. Three mutually exclusive channels are considered: two all-hadronic channels and a photon-associated channel. Results are reported from the analysis of up to 30.6 fb −1 of pp data at s √ =13 TeV collected with the ATLAS detector at the LHC. The measured signal strength relative to the Standard Model prediction from the combined analysis is 2.5 +1.4 −1.3 for inclusive Higgs boson production and 3.0 +1.7 −1.6 for vector-boson fusion production only

    Measurement of jet fragmentation in Pb+Pb and pp collisions at √s NN =5.02 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of jet fragmentation functions in 0.49 nb −1 of Pb+Pb collisions and 25 pb −1 of pp collisions at √ sNN =5.02 TeV collected in 2015 with the ATLAS detector at the LHC. These measurements provide insight into the jet quenching process in the quark-gluon plasma created in the aftermath of ultra-relativistic collisions between two nuclei. The modifications to the jet fragmentation functions are quantified by dividing the measurements in Pb+Pb collisions by baseline measurements in pp collisions. This ratio is studied as a function of the transverse momentum of the jet, the jet rapidity, and the centrality of the collision. In both collision systems, the jet fragmentation functions are measured for jets with transverse momentum between 126 GeV and 398 GeV and with an absolute value of jet rapidity less than 2.1. An enhancement of particles carrying a small fraction of the jet momentum is observed, which increases with centrality and with increasing jet transverse momentum. Yields of particles carrying a very large fraction of the jet momentum are also observed to be enhanced. Between these two enhancements of the fragmentation functions a suppression of particles carrying an intermediate fraction of the jet momentum is observed in Pb+Pb collisions. A small dependence of the modifications on jet rapidity is observed

    Search for heavy particles decaying into a top-quark pair in the fully hadronic final state in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search for new particles decaying into a pair of top quarks is performed using proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider at a center-of-mass energy of √s=13  TeV corresponding to an integrated luminosity of 36.1  fb−1. Events consistent with top-quark pair production and the fully hadronic decay mode of the top quarks are selected by requiring multiple high transverse momentum jets including those containing b-hadrons. Two analysis techniques, exploiting dedicated top-quark pair reconstruction in different kinematic regimes, are used to optimize the search sensitivity to new hypothetical particles over a wide mass range. The invariant mass distribution of the two reconstructed top-quark candidates is examined for resonant production of new particles with various spins and decay widths. No significant deviation from the Standard Model prediction is observed and limits are set on the production cross-section times branching fraction for new hypothetical Z′ bosons, dark-matter mediators, Kaluza-Klein gravitons and Kaluza-Klein gluons. By comparing with the predicted production cross sections, the Z′ boson in the topcolor-assisted-technicolor model is excluded for masses up to 3.1–3.6 TeV, the dark-matter mediators in a simplified framework are excluded in the mass ranges from 0.8 to 0.9 TeV and from 2.0 to 2.2 TeV, and the Kaluza-Klein gluon is excluded for masses up to 3.4 TeV, depending on the decay widths of the particles
    corecore