37 research outputs found

    Numerical study of the one-dimensional quantum compass model

    Full text link
    The ground state magnetic phase diagram of the one-dimensional quantum compass model (QCM) is studied using the numerical Lanczos method. A detailed numerical analysis of the low energy excitation spectrum is presented. The energy gap and the spin-spin correlation functions are calculated for finite chains. Two kind of the magnetic long-range orders, the Neel and a type of the stripe-antiferromagnet, in the ground state phase diagram are identified. Based on the numerical analysis, the first and second order quantum phase transitions in the ground state phase diagram are identified.Comment: 6 pages, 8 figures. arXiv admin note: text overlap with arXiv:1105.211

    Thermodynamic Properties of the One-Dimensional Extended Quantum Compass Model in the Presence of a Transverse Field

    Full text link
    The presence of a quantum critical point can significantly affect the thermodynamic properties of a material at finite temperatures. This is reflected, e.g., in the entropy landscape S(T; c) in the vicinity of a quantum critical point, yielding particularly strong variations for varying the tuning parameter c such as magnetic field. In this work we have studied the thermodynamic properties of the quantum compass model in the presence of a transverse field. The specific heat, entropy and cooling rate under an adiabatic demagnetization process have been calculated. During an adiabatic (de)magnetization process temperature drops in the vicinity of a field-induced zero-temperature quantum phase transitions. However close to field-induced quantum phase transitions we observe a large magnetocaloric effect

    Quantum phase transitions in the exactly solved spin-1/2 Heisenberg-Ising ladder

    Full text link
    Ground-state behaviour of the frustrated quantum spin-1/2 two-leg ladder with the Heisenberg intra-rung and Ising inter-rung interactions is examined in detail. The investigated model is transformed to the quantum Ising chain with composite spins in an effective transverse and longitudinal field by employing either the bond-state representation or the unitary transformation. It is shown that the ground state of the Heisenberg-Ising ladder can be descended from three exactly solvable models: the quantum Ising chain in a transverse field, the 'classical' Ising chain in a longitudinal field or the spin-chain model in a staggered longitudinal-transverse field. The last model serves in evidence of the staggered bond phase with alternating singlet and triplet bonds on the rungs of two-leg ladder, which appears at moderate values of the external magnetic field and consequently leads to a fractional plateau at a half of the saturation magnetization. The ground-state phase diagram totally consists of five ordered and one quantum disordered phase, which are separated from each other either by the lines of discontinuous or continuous quantum phase transitions. The order parameters are exactly calculated for all five ordered phases and the quantum disordered phase is characterized through different short-range spin-spin correlations.Comment: corrected version, figure A1 has been changed, accepted in J. Phys. A, 19 pages, 7 figure

    Topology of chalcogen chains

    Get PDF
    We investigate the topological properties of the helical atomic chains occurring in elemental selenium and tellurium. We postulate a realistic model that includes spin-orbit interaction and show this to be topologically non-trivial, with a topological invariant protected by a crystalline symmetry. We describe the end-states, which are orbitally polarized, with an orbital density modulation strongly peaked at the edge. Furthermore, we propose a simplified model that decomposes into three orbital chains, allowing us to define a topological invariant protected by a crystalline symmetry. We contrast this result with recent observations made for the orbital Su-Schrieffer-Heeger model containing a pp-orbital zigzag chain.Comment: 10 figure

    Quantum Correlation in One-dimensional Extend Quantum Compass Model

    Full text link
    We study the correlations in the one-dimensional extended quantum compass model in a transverse magnetic field. By exactly solving the Hamiltonian, we find that the quantum correlation of the ground state of one-dimensional quantum compass model is vanishing. We show that quantum discord can not only locate the quantum critical points, but also discern the orders of phase transitions. Furthermore, entanglement quantified by concurrence is also compared.Comment: 8 pages, 14 figures, to appear in Eur. Phys. J.

    State of the Art in Building FaƧades

    Get PDF
    This chapter presents a portfolio of building materials suitable for facades. It describes the relationship between material type, building element, facade, and the entire building structure. Traditional facades based on static components, as well as adaptive concepts able to interact with changing environmental conditions, are briefly described and illustrated with pictures. Climatic design principles, biomimicry, and bioinspiration in architecture are introduced with the purpose of inspiring future developments

    Toksikokinetika prometrina u mozgu miŔeva

    Get PDF
    Prometryne is a methylthio-s-triazine herbicide. Signifi cant trace amounts are found in the environment, mainly in water, soil, and food plants. The aim of this study was to establish brain and blood prometryne levels after single oral dose (1 g kg-1) in adult male and female mice. Prometryne was measured using the GC/MS assay at 1, 2, 4, 8, and 24 h after prometryne administration. Peak brain and blood prometryne values were observed 1 h after administration and they decreased in a time-dependent manner. Male mice had consistently higher brain and blood prometryne levels than female mice. The observed prometryne kinetics was similar to that reported for the structurally related herbicide atrazine.Prometrin je metiltio-s-triazinski herbicid. Značajne količine prometrina zaostaju u tragovima u okoliÅ”u, poglavito u vodi, tlu i biljkama koje rabimo za prehranu. Cilj je rada izmjeriti količinu prometrina koja se apsorbira u mozgu i krvi nakon primijenjene akutne oralne doze (1 g kg-1 tjelesne mase) u odraslih miÅ”eva obaju spolova. Razine prometrina u mozgu i krvi izmjerene su GC/MS-om tijekom 1., 2., 4., 8. i 24. sata nakon izlaganja. Utvrđeno je da je udio prometrina koji se zadržava u živčanom tkivu relativno nizak ali detektabilan u odnosu na koncentraciju u krvi i koncentraciju primijenjene doze. NajviÅ”e koncentracije u krvi i maseni udjeli u mozgu zabilježeni su tijekom 1. sata nakon izlaganja, a s vremenom izmjerene vrijednosti značajno opadaju. Uočena je značajna razlika između mužjaka i ženki pri čemu mužjaci imaju značajno viÅ”e razine prometrina u mozgu i krvi nego ženke. Opisana toksikokinetika prometrina pokazuje sličnosti s otprije opisanom i poznatom toksikokinetikom strukturalno sličnog herbicida atrazina

    Desired morphology in energy capture and storage advanced facades

    No full text
    Current strategies for facades envelopes are determined by a static response defined by a single prescriptive value. This code requirement diminishes the ability of a facade to interact with the environment by constant readjustment of functional performance. This is the knowledge gap between present code compliant facades, based on measures in the reduction of thermal conduction to what could be. The research proposes methods to demonstrate principle functions to capture and storage energy in facades that is derived by natural systems. It demonstrates natureā€™s characterization of materials by methods to control material assembly and functionality by hierarchical strategies that can be applied to envelope functionality. Nature generates materials with defined parameters to move neighbouring atoms within and between materials at a micrometer or nanometer levels. This interface reaction between different materials is driven by chemical composition and temperature with unprecedented levels of complexity and prevision. This is a thermal measurement system of precise modulation response as a dynamic reaction diffusion system. The question is, why is this characterization of function not emulated in envelope design? The aim of the research is therefore to demonstrate how utilizing bio-inspired engineering aims would progress the knowledge gap in understanding, to advance energy capture and storage materials and to determine hierarchical rule based measures defined by steady state theory, in the control of solar heat load. The application to observe and quantify heat flow targeting theory will progress our understanding to derive proof of principle results. To embed natures approach to advanced materials of energy capture and storage will ultimately lead to desired morphology in functional facades. This through a case studies approach. Embarking on the biological solutions, the requirement of the maximizing the solar energy capture can be fulfilled by following the present and previously recognized natural strategies of heliotropism (following the sun, which could be observed e.g. in the sunflowers). The plans use a phytochrome, a photoreceptor pigment to detect light. Light-detection mechanism is utilized in long and shortrange behaviour regulation. It regulates the circadian rhythm as well as the seasonal rhythms like time of flowering and seeding. Leaf position is modified in the mechanism of stem elongation that is called phototropism: a chemical compound called auxin causes the plant cells to have an elongated shape on the further side form the light (this makes the stem bend towards the light)
    corecore