852 research outputs found
Quantum dislocations: the fate of multiple vacancies in two dimensional solid 4He
Defects are believed to play a fundamental role in the supersolid state of
4He. We have studied solid 4He in two dimensions (2D) as function of the number
of vacancies n_v, up to 30, inserted in the initial configuration at rho =
0.0765 A^-2, close to the melting density, with the exact zero temperature
Shadow Path Integral Ground State method. The crystalline order is found to be
stable also in presence of many vacancies and we observe two completely
different regimes. For small n_v, up to about 6, vacancies form a bound state
and cause a decrease of the crystalline order. At larger n_v, the formation
energy of an extra vacancy at fixed density decreases by one order of magnitude
to about 0.6 K. In the equilibrated state it is no more possible to recognize
vacancies because they mainly transform into quantum dislocations and
crystalline order is found almost independent on how many vacancies have been
inserted in the initial configuration. The one--body density matrix in this
latter regime shows a non decaying large distance tail: dislocations, that in
2D are point defects, turn out to be mobile, their number is fluctuating, and
they are able to induce exchanges of particles across the system mainly
triggered by the dislocation cores. These results indicate that the notion of
incommensurate versus commensurate state loses meaning for solid 4He in 2D,
because the number of lattice sites becomes ill defined when the system is not
commensurate. Crystalline order is found to be stable also in 3D in presence of
up to 100 vacancies
Ground-state properties and superfluidity of two- and quasi two-dimensional solid 4He
In a recent study we have reported a new type of trial wave function
symmetric under the exchange of particles and which is able to describe a
supersolid phase. In this work, we use the diffusion Monte Carlo method and
this model wave function to study the properties of solid 4He in two- and quasi
two-dimensional geometries. In the purely two-dimensional case, we obtain
results for the total ground-state energy and freezing and melting densities
which are in good agreement with previous exact Monte Carlo calculations
performed with a slightly different interatomic potential model. We calculate
the value of the zero-temperature superfluid fraction \rho_{s} / \rho of 2D
solid 4He and find that it is negligible in all the considered cases, similarly
to what is obtained in the perfect (free of defects) three-dimensional crystal
using the same computational approach. Interestingly, by allowing the atoms to
move locally in the perpendicular direction to the plane where they are
confined to zero-point oscillations (quasi two-dimensional crystal) we observe
the emergence of a finite superfluid density that coexists with the periodicity
of the system.Comment: 16 pages, 8 figure
Theory of Supersolidity
After reviewing some experimental facts, and early theories, I sketch the
Hartree-Fock description of Boson solids, emphasizing the contrast with the
Fermion case in that the natural solution is a product of local wave-functions.
I then investigate the Boson Hubbard model to demonstrate that the local
functions are not orthogonal and exemplify a novel state of matter which has
superflow but not ODLRO, below a cooperative thermal transition. I then discuss
whether or not these ideas actually apply to solid He
Cavitation pressure in liquid helium
Recent experiments have suggested that, at low enough temperature, the
homogeneous nucleation of bubbles occurs in liquid helium near the calculated
spinodal limit. This was done in pure superfluid helium 4 and in pure normal
liquid helium 3. However, in such experiments, where the negative pressure is
produced by focusing an acoustic wave in the bulk liquid, the local amplitude
of the instantaneous pressure or density is not directly measurable. In this
article, we present a series of measurements as a function of the static
pressure in the experimental cell. They allowed us to obtain an upper bound for
the cavitation pressure P_cav (at low temperature, P_cav < -2.4 bar in helium
3, P_cav < -8.0 bar in helium 4). From a more precise study of the acoustic
transducer characteristics, we also obtained a lower bound (at low temperature,
P_cav > -3.0 bar in helium 3, P_cav > - 10.4 bar in helium 4). In this article
we thus present quantitative evidence that cavitation occurs at low temperature
near the calculated spinodal limit (-3.1 bar in helium 3 and -9.5 bar in helium
4). Further information is also obtained on the comparison between the two
helium isotopes. We finally discuss the magnitude of nonlinear effects in the
focusing of a sound wave in liquid helium, where the pressure dependence of the
compressibility is large.Comment: 11 pages, 9 figure
Non-Classical Response from Quench-Cooled Solid Helium Confined in Porous Gold
We have investigated the non-classical response of solid 4He confined in
porous gold set to torsional oscillation. When solid helium is grown rapidly,
nearly 7% of the solid helium appears to be decoupled from the oscillation
below about 200 mK. Dissipation appears at temperatures where the decoupling
shows maximum variation. In contrast, the decoupling is substantially reduced
in slowly grown solid helium. The dynamic response of solid helium was also
studied by imposing a sudden increase in the amplitude of oscillation. Extended
relaxation in the resonant period shift, suggesting the emergence of the
pinning of low energy excitations, was observed below the onset temperature of
the non-classical response. The motion of a dislocation or a glassy solid is
restricted in the entangled narrow pores and is not likely responsible for the
period shift and long relaxation
Fast Diffusion Process in Quenched hcp Dilute Solid He-He Mixture
The study of phase structure of dilute He - He solid mixture of
different quality is performed by spin echo NMR technique. The diffusion
coefficient is determined for each coexistent phase. Two diffusion processes
are observed in rapidly quenched (non-equilibrium) hcp samples: the first
process has a diffusion coefficient corresponding to hcp phase, the second one
has huge diffusion coefficient corresponding to liquid phase. That is evidence
of liquid-like inclusions formation during fast crystal growing. It is
established that these inclusions disappear in equilibrium crystals after
careful annealing.Comment: 7 pages, 3 figures, QFS200
Path integral Monte Carlo simulation of helium at negative pressures
Path integral Monte Carlo (PIMC) simulations of liquid helium at negative
pressure have been carried out for a temperature range from the critical
temperature to below the superfluid transition. We have calculated the
temperature dependence of the spinodal line as well as the pressure dependence
of the isothermal sound velocity in the region of the spinodal. We discuss the
slope of the superfluid transition line and the shape of the dispersion curve
at negative pressures.Comment: 6 pages, 7 figures, submitted to Physical Review B Revised: new
reference, replaced figure
Study of solid 4He in two dimensions. The issue of zero-point defects and study of confined crystal
Defects are believed to play a fundamental role in the supersolid state of
4He. We report on studies by exact Quantum Monte Carlo (QMC) simulations at
zero temperature of the properties of solid 4He in presence of many vacancies,
up to 30 in two dimensions (2D). In all studied cases the crystalline order is
stable at least as long as the concentration of vacancies is below 2.5%. In the
2D system for a small number, n_v, of vacancies such defects can be identified
in the crystalline lattice and are strongly correlated with an attractive
interaction. On the contrary when n_v~10 vacancies in the relaxed system
disappear and in their place one finds dislocations and a revival of the
Bose-Einstein condensation. Thus, should zero-point motion defects be present
in solid 4He, such defects would be dislocations and not vacancies, at least in
2D. In order to avoid using periodic boundary conditions we have studied the
exact ground state of solid 4He confined in a circular region by an external
potential. We find that defects tend to be localized in an interfacial region
of width of about 15 A. Our computation allows to put as upper bound limit to
zero--point defects the concentration 0.003 in the 2D system close to melting
density.Comment: 17 pages, accepted for publication in J. Low Temp. Phys., Special
Issue on Supersolid
Anomaly in the stability limit of liquid helium 3
We propose that the liquid-gas spinodal line of helium 3 reaches a minimum at
0.4 K. This feature is supported by our cavitation measurements. We also show
that it is consistent with extrapolations of sound velocity measurements.
Speedy [J. Phys. Chem. 86, 3002 (1982)] previously proposed this peculiar
behavior for the spinodal of water and related it to a change in sign of the
expansion coefficient alpha, i. e. a line of density maxima. Helium 3 exhibits
such a line at positive pressure. We consider its extrapolation to negative
pressure. Our discussion raises fundamental questions about the sign of alpha
in a Fermi liquid along its spinodal.Comment: 5 pages, 3 figure
Critical Casimir effect and wetting by helium mixtures
We have measured the contact angle of the interface of phase-separated
He-He mixtures against a sapphire window. We have found that this
angle is finite and does not tend to zero when the temperature approaches
, the temperature of the tri-critical point. On the contrary, it increases
with temperature. This behavior is a remarkable exception to what is generally
observed near critical points, i.e. "critical point wetting''. We propose that
it is a consequence of the "critical Casimir effect'' which leads to an
effective attraction of the He-He interface by the sapphire near
.Comment: submitted july 13 (2002), published march 20 (2003
- …