17 research outputs found

    Human corneal stromal stem cells support limbal epithelial cells cultured on RAFT tissue equivalents.

    Get PDF
    Human limbal epithelial cells (HLE) and corneal stromal stem cells (CSSC) reside in close proximity in vivo in the corneal limbal stem cell niche. However, HLE are typically cultured in vitro without supporting niche cells. Here, we re-create the cell-cell juxtaposition of the native environment in vitro, to provide a tool for investigation of epithelial-stromal cell interactions and to optimize HLE culture conditions for potential therapeutic application. RAFT (Real Architecture For 3D Tissue) tissue equivalents (TEs) were used as a 3-dimensional substrate for co-culturing HLE and CSSC. Our results demonstrate that a monolayer of HLE that maintained expression of p63α, ABCB5, CK8 and CK15 (HLE markers), formed on the surface of RAFT TEs within 13 days of culture. CSSC remained in close proximity to HLE and maintained expression of mesenchymal stem cell markers. This simple technique has a short preparation time of only 15 days with the onset of HLE layering and differentiation observed. Furthermore, co-cultivation of HLE with another niche cell type (CSSC) directly on RAFT TEs, eliminates the requirement for animal-derived feeder cells. RAFT TEs may be useful for future therapeutic delivery of multiple cell types to restore the limbal niche following ocular surface injury or disease

    Advanced imaging and tissue engineering of the human limbal epithelial stem cell niche

    Get PDF
    The limbal epithelial stem cell niche provides a unique, physically protective environment in which limbal epithelial stem cells reside in close proximity with accessory cell types and their secreted factors. The use of advanced imaging techniques is described to visualize the niche in three dimensions in native human corneal tissue. In addition, a protocol is provided for the isolation and culture of three different cell types, including human limbal epithelial stem cells from the limbal niche of human donor tissue. Finally, the process of incorporating these cells within plastic compressed collagen constructs to form a tissue-engineered corneal limbus is described and how immunohistochemical techniques may be applied to characterize cell phenotype therein

    Canine Corneal Stromal Cells Have Multipotent Mesenchymal Stromal Cell Properties In Vitro

    Get PDF
    The objective of this study was to determine whether corneal stromal cells (CSCs) from the limbal and central corneal stroma in dogs have multipotent mesenchymal stem/stromal cell (MSC) properties, and whether this cell population can be differentiated into keratocyte-like cells (KDCs). Normal, donated, mesocephalic dog corneas were used to isolate CSC in vitro. Immunohistochemistry demonstrated a distinct population of CD90 expressing cells in the anterior stroma throughout the limbal and central cornea. CSC could be cultured from both the limbal and central cornea and the culture kinetics showed a progenitor cell profile. The CSC expressed stem cell markers CD90, CD73, CD105, N-cadherin, and Pax6, while CD34 was negative. Limbal and central CSC differentiated into osteoblasts, chondrocytes, and adipocytes confirming their multipotency. Coculturing allogeneic peripheral blood mononuclear cells (PBMCs) with limbal CSCs did not affect baseline PBMC proliferation indicating a degree of innate immune privilege. Limbal CSC could be differentiated into KDCs that expressed Keratocan, Lumican, and ALDH1A3 and downregulated Pax6 and N-cadherin. In conclusion, canine CSCs have multipotent MSC properties similarly described in humans and could serve as a source of cells for cell therapy and studying corneal diseases

    Reappearance of limbal pigmentation post-simple limbal epithelial transplant

    Get PDF
    We report the repigmentation at the limbus in patients who underwent simple limbal epithelial transplant (SLET) for uniocular chemical injury. The first case is of an 8-year-old child who presented with grade 4 chemical injury, with limbal stem cell deficiency (LSCD) corresponding to 6 o' clock till 11 o' clock. He was managed by amniotic membrane graft in the acute stage and SLET after 6 months of the initial injury. The second case is of a 15-year-old female who presented with lime injury, which had resulted in 6 o' clock of limbal involvement (10 o' clock till 4 o' clock). The patient was managed on similar lines with amniotic membrane graft (AMG) in the acute phase and SLET after 6 months of injury. The ocular surface was stable in both the patients post-SLET. The effected limbus showed pigmentation at 8 months of follow-up which eventually became distinct and remained stable. We speculate that the pigmentation at limbus could be attributed to proliferation and movement of melanocytes from limbal biopsy in SLET. These may be capable of supporting the proliferation of limbal epithelial cells and modulation of corneal wound healing

    Mapping the burden of severe forms of epidermolysis bullosa – Implications for patient managementCapsule Summary

    No full text
    Background: The pathophysiological processes underlying the phenotypic spectrum of severe forms of epidermolysis bullosa (EB) are complex and poorly understood. Objective: To use burden mapping to explore relationships between primary pathomechanisms and secondary clinical manifestations in severe forms of EB (junctional and dystrophic EB [JEB/DEB]) and highlight strengths and weaknesses in evidence regarding the contribution of different pathways. Methods: Literature searches were performed to identify evidence regarding the pathophysiological and clinical aspects of JEB/DEB. Identified publications and clinical experience were used to construct burden maps to visually communicate plausible connections and their relative importance by subtype. Results: Our findings suggest that most of the clinical consequences of JEB/DEB may result from an abnormal state and/or faulty skin remodeling driven by a vicious cycle of delayed wound healing, predominantly mediated through inflammation. The quantity and quality of evidence varies by individual manifestations and disease subtype. Limitations: The burden maps are provisional hypotheses requiring further validation and are limited by the published evidence base and subjectivity in clinical opinion. Conclusions: Delayed wound healing appears to be a key driver of the burden of JEB/DEB. Further studies are warranted to understand the role of inflammatory mediators and accelerated wound healing in patient management
    corecore