2,213 research outputs found

    Gravitational lens magnification by Abell 1689: Distortion of the background galaxy luminosity function

    Get PDF
    Gravitational lensing magnifies the luminosity of galaxies behind the lens. We use this effect to constrain the total mass in the cluster Abell 1689 by comparing the lensed luminosities of background galaxies with the luminosity function of an undistorted field. Since galaxies are assumed to be a random sampling of luminosity space, this method is not limited by clustering noise. We use photometric redshift information to estimate galaxy distance and intrinsic luminosity. Knowing the redshift distribution of the background population allows us to lift the mass/background degeneracy common to lensing analysis. In this paper we use 9 filters observed over 12 hours with the Calar Alto 3.5m telescope to determine the redshifts of 1000 galaxies in the field of Abell 1689. Using a complete sample of 151 background galaxies we measure the cluster mass profile. We find that the total projected mass interior to 0.25h^(-1)Mpc is (0.48 +/- 0.16) * 10^(15)h^(-1) solar masses, where our error budget includes uncertainties from the photometric redshift determination, the uncertainty in the off-set calibration and finite sampling. This result is in good agreement with that found by number count and shear-based methods and provides a new and independent method to determine cluster masses.Comment: 13 pages, 10 figures. Submitted to MNRAS (10/99); Replacement with 1 page extra text inc. new section, accepted by MNRA

    Measurement of intrinsic alignments in galaxy ellipticities

    Full text link
    We measure the alignment of galaxy ellipticities in the local universe over a range of scales using digitized photographic data from the SuperCOSMOS Sky Survey. We find for a magnitude cut of b_J < 20.5, corresponding to a median galaxy redshift of z = 0.1, and 2x10^6 galaxies, that the galaxy ellipticities exhibit a non-zero correlation over a range of scales between 1 and 100 arcminutes. In particular, we measure the variance of mean galaxy ellipticities, sg^2(theta), in square angular cells on the sky as a function of cell size and find it lies in the range, 2 x 10^{-4} > sg^2(theta) > 1 x 10^{-5} for cell side lengths between 15 < theta < 100 arcminutes. Considering the low median redshift of the galaxies in the sample and hence the relatively low effective cross-section for lensing of these galaxies by the large-scale structure of the Universe, we propose that we have detected an intrinsic alignment of galaxy ellipticities. We compare our results to recent analytical and numerical predictions made for the intrinsic galaxy alignment and find good agreement. We discuss the importance of these results for measuring cosmic shear from upcoming shallow surveys (e.g. Sloan Digital Sky Survey) and we outline how these measurements could possibly be used to constrain models of galaxy formation and/or measure the mass distribution in the local universe.Comment: revised, 10 pages, 16 figures, matches version accepted for publication in MNRA

    Orbit equivalence rigidity for ergodic actions of the mapping class group

    Full text link
    We establish orbit equivalence rigidity for any ergodic, essentially free and measure-preserving action on a standard Borel space with a finite positive measure of the mapping class group for a compact orientable surface with higher complexity. We prove similar rigidity results for a finite direct product of mapping class groups as well.Comment: 11 pages, title changed, a part of contents remove

    Changes in copepod distributions associated with increased turbulence from wind stress

    Get PDF
    Vertical profiles of turbulent kinetic energy dissipation rate (ε), current velocity, temperature, salinity, chlorophyll fluorescence, and copepods were sampled for 4 d at an anchor station on the southern flank of Georges Bank when the water column was stratified in early June 1995. Copepodite stages of Temora spp., Oithona spp., Pseudocalanus spp., and Calanus finmarchicus, and all of their naupliar stages except for Temora spp., were found deeper in the water column when turbulent dissipation rates in the surface mixed layer increased in response to increasing wind stress. Taxa that initially occurred at the bottom of the surface mixed layer at 10 to 15 m depth ( ε ¾ 10-8 W kg-1) before the wind event were located in the pycnocline at 20 to 25 m depth when dissipation rates at 10 m increased up to 10-6 W kg-1. Dissipation rates in the pycnocline were similar to those experienced at shallower depths before the wind event. After passage of the wind event and with relaxation of dissipation rates in the surface layer, all stages returned to prior depths above the pycnocline. Temora spp. nauplii did not change depth during this period. Our results indicate that turbulence from a moderate wind event can influence the vertical distribution of copepods in the surface mixed layer. Changes in the vertical distribution of copepods can impact trophic interactions, and movements related to turbulence would affect the application of turbulence theory to encounter and feeding rates

    Lens magnification by CL0024+1654 in the U and R band

    Get PDF
    [ABRIDGED] We estimate the total mass distribution of the galaxy cluster CL0024+1654 from the measured source depletion due to lens magnification in the R band. Within a radius of 0.54Mpc/h, a total projected mass of (8.1+/-3.2)*10^14 M_sol/h (EdS) is measured, which corresponds to a mass- to-light ratio of M/L(B)=470+/-180. We compute the luminosity function of CL0024+1654 in order to estimate contamination of the background source counts from cluster galaxies. Three different magnification-based reconstruction methods are employed using both local and non-local techniques. We have modified the standard single power-law slope number count theory to incorporate a break and applied this to our observations. Fitting analytical magnification profiles of different cluster models to the observed number counts, we find that the cluster is best described either by a NFW model with scale radius r_s=334+/-191 kpc/h and normalisation kappa_s=0.23+/-0.08 or a power-law profile with slope xi=0.61+/-0.11, central surface mass density kappa_0=1.52+/-0.20 and assuming a core radius of r_core=35 kpc/h. The NFW model predicts that the cumulative projected mass contained within a radius R scales as M(<R)=2.9*10^14*(R/1')^[1.3-0.5lg (R/1')] M_sol/h. Finally, we have exploited the fact that flux magnification effectively enables us to probe deeper than the physical limiting magnitude of our observations in searching for a change of slope in the U band number counts. We rule out both a total flattening of the counts with a break up to U_AB<=26.6 and a change of slope, reported by some studies, from dlog N/dm=0.4->0.15 up to U_AB<=26.4 with 95% confidence.Comment: 19 pages, 12 figures, submitted to A&A. New version includes more robust U band break analysis and contamination estimates, plus new plot

    The OLS-lens survey: The discovery of five new galaxy-galaxy strong lenses from the SDSS

    Full text link
    Bright galaxy-galaxy strong lenses are much more powerful than lensed quasars for measuring the mass profiles of galaxies, but until this year only a handful have been known. Here we present five new examples, identified via the optimal line-of-sight gravitational lens search strategy applied to luminous red galaxies in the Sloan Digital Sky Survey (SDSS). Our survey largely complements a similar survey by Bolton et al., who recently presented several new lenses. The lensed background galaxies are selected from the SDSS spectra via the presence of narrow emission line signatures, including the [OII] 3726,3729, Hb and [OIII] 4960,5008 lines, superposed on the spectra of the bright, intervening, deflector galaxies. Our five confirmed new systems include deflector galaxies with redshifts z=0.17-0.28 and lensed galaxies with redshifts z=0.47-1.18. Simulations of moderately deep (few orbits) HST-ACS imaging of systems such as these, where the lensed source is brighter than r~23, are presented. These demonstrate the feasibility of measuring accurately the inner slope of the dark matter halo to within an uncertainty sigma(gamma)~0.1, the dark matter fraction within the Einstein radius, and the mass-to-light ratio of the stars alone, independently of dynamical measurements. The high success rate of our search so far, >60%, and the relatively modest observational resources necessary to confirm the gravitational lens nature of the candidates, demonstrate that compilation of a sample of ~100 galaxy-galaxy lenses from the SDSS is readily achievable, opening up a rich new field in dark matter studies.Comment: To appear in MNRAS. Three figs provided as low-res jpegs. Full-resolution PS of paper at http://astro.ic.ac.uk/~sjw4/MF1373rv.ps.g

    Discovery of a redshift 6.13 quasar in the UKIRT infrared deep sky survey

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO) DOI: 10.1051/0004-6361/200811161Optical and near-infrared (NIR) spectra are presented for ULAS J131911.29+095051.4 (hereafter ULAS J1319+0950), a new redshift z = 6.127 0.004 quasar discovered in the Third Data Release (DR3) of the UKIRT Infrared Deep Sky Survey (UKIDSS). The source has = 19.10 0.03, corresponding to = -27.12, which is comparable to the absolute magnitudes of the z 6 quasars discovered in the Sloan Digital Sky Survey (SDSS). ULAS J1319+0950 was, in fact, registered by SDSS as a faint source with = 20.13 0.12, just below the signal-to-noise ratio limit of the SDSS high-redshift quasar survey. The faint z-band magnitude is a consequence of the weak Ly /N V emission line, which has a rest-frame equivalent width of ~20Å and provides only a small boost to the z-band flux. Nevertheless, there is no evidence of a significant new population of high-redshift quasars with weak emission lines from this UKIDSS-based search. The Ly  optical depth to ULAS J1319+0950 is consistent with that measured towards similarly distant SDSS quasars, implying that results from optical- and NIR-selected quasars may be combined in studies of cosmological reionization. Also presented is a new NIR-spectrum of the previously discovered UKIDSS quasar ULAS J020332.38+001229.2, which reveals the object to be a broad absorption line quasar. The new spectrum shows that the emission line initially identified as Ly  is actually N V, leading to a revised redshift of z = 5.72, rather than z = 5.86 as previously estimatedPeer reviewe
    • …
    corecore