672 research outputs found

    Fluctuations in Polymer Translocation

    Full text link
    We investigate a model of chaperone-assisted polymer translocation through a nanopore in a membrane. Translocation is driven by irreversible random sequential absorption of chaperone proteins that bind to the polymer on one side of the membrane. The proteins are larger than the pore and hence the backward motion of the polymer is inhibited. This mechanism rectifies Brownian fluctuations and results in an effective force that drags the polymer in a preferred direction. The translocated polymer undergoes an effective biased random walk and we compute the corresponding diffusion constant. Our methods allow us to determine the large deviation function which, in addition to velocity and diffusion constant, contains the entire statistics of the translocated length.Comment: 20 pages, 6 figure

    Computational and Biological Analogies for Understanding Fine-Tuned Parameters in Physics

    Full text link
    In this philosophical paper, we explore computational and biological analogies to address the fine-tuning problem in cosmology. We first clarify what it means for physical constants or initial conditions to be fine-tuned. We review important distinctions such as the dimensionless and dimensional physical constants, and the classification of constants proposed by Levy-Leblond. Then we explore how two great analogies, computational and biological, can give new insights into our problem. This paper includes a preliminary study to examine the two analogies. Importantly, analogies are both useful and fundamental cognitive tools, but can also be misused or misinterpreted. The idea that our universe might be modelled as a computational entity is analysed, and we discuss the distinction between physical laws and initial conditions using algorithmic information theory. Smolin introduced the theory of "Cosmological Natural Selection" with a biological analogy in mind. We examine an extension of this analogy involving intelligent life. We discuss if and how this extension could be legitimated. Keywords: origin of the universe, fine-tuning, physical constants, initial conditions, computational universe, biological universe, role of intelligent life, cosmological natural selection, cosmological artificial selection, artificial cosmogenesis.Comment: 25 pages, Foundations of Science, in pres

    New physiological activities of myosuppressin, sulfakinin and NVP-like peptide in Zophobas atratus beetle

    Get PDF
    Three neuropeptides Zopat-MS-2 (pEDVDHVFLRFa), Zopat-SK-1 (pETSDDYGHLRFa) and Zopat-NVPL-4trunc. (GRWGGFA), recently isolated from the neuroendocrine system of the Zophobas atratus beetle, were tested for their myotropic and hyperglycaemic activities in this species. These peptides exerted differentiated dose-dependent and tissue specific physiological effects. Zopat-MS-2 inhibited contractions of the isolated heart, ejaculatory duct, oviduct and hindgut of adult beetles and induced bimodal effects in the heart contractile activity of pupae in vivo. It also increased the haemolymph free sugar level in larvae of this species, apart from myotropic activity. Zopat-SK-1 showed myostimulatory action on the isolated hindgut of the adult beetles, but it decreased contractions of the heart, ejaculatory duct and oviduct. Injections of this peptide at a dose of 2 μg also caused delayed cardioinhibitory effects on the heartbeat of the pupae. Together with the ability to increase free sugar level in the haemolymph of larvae these were new physiological activities of sulfakinins in insects. Zopat-NVPL-4trunc. inhibited the muscle contractions of the two organs: hindgut and ejaculatory duct but it was inactive on the oviduct and the heart of the adult beetles. This peptide also increased free sugar level concentration in the haemolymph of Z. atratus larvae. These physiological actions are the first biological activities discovered for this group of the insect peptides. The present work showed pleiotropic activity of three neuropeptides and indicates that the visceral muscle contractions and the haemolymph sugar homeostasis in Z. atratus are regulated by complex mechanisms

    Single-molecule experiments in biological physics: methods and applications

    Full text link
    I review single-molecule experiments (SME) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SME it is possible to: manipulate molecules one at a time and measure distributions describing molecular properties; characterize the kinetics of biomolecular reactions and; detect molecular intermediates. SME provide the additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SME it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level emphasizing the importance of SME to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SME from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOT), magnetic tweezers (MT), biomembrane force probe (BFP) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation), proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SME to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.Comment: Latex, 60 pages, 12 figures, Topical Review for J. Phys. C (Cond. Matt

    Two approaches to the study of the origin of life.

    Get PDF
    This paper compares two approaches that attempt to explain the origin of life, or biogenesis. The more established approach is one based on chemical principles, whereas a new, yet not widely known approach begins from a physical perspective. According to the first approach, life would have begun with - often organic - compounds. After having developed to a certain level of complexity and mutual dependence within a non-compartmentalised organic soup, they would have assembled into a functioning cell. In contrast, the second, physical type of approach has life developing within tiny compartments from the beginning. It emphasises the importance of redox reactions between inorganic elements and compounds found on two sides of a compartmental boundary. Without this boundary, ¿life¿ would not have begun, nor have been maintained; this boundary - and the complex cell membrane that evolved from it - forms the essence of life

    Modern cities modelled as “super-cells” rather than multicellular organisms: Implications for industry, goods and services

    Get PDF
    The structure and “metabolism” (movement and conversion of goods and energy) of urban areas has caused cities to be identified as “super-organisms”, placed between ecosystems and the biosphere, in the hierarchy of living systems. Yet most such analogies are weak, and render the super-organism model ineffective for sustainable development of cities. Via a cluster analysis of 15 shared traits of the hierarchical living system, we found that industrialized cities are more similar to eukaryotic cells than to multicellular organisms; enclosed systems, such as factories and greenhouses, paralleling organelles in eukaryotic cells. We further developed a “super-cell” industrialized city model: a “eukarcity” with citynucleus (urban area) as a regulating centre, and organaras (enclosed systems, which provide the majority of goods and services) as the functional components, and cityplasm (natural ecosystems and farmlands) as the matrix. This model may improve the vitality and sustainability of cities through planning and management

    Lethal Mutants and Truncated Selection Together Solve a Paradox of the Origin of Life

    Get PDF
    BACKGROUND: Many attempts have been made to describe the origin of life, one of which is Eigen's cycle of autocatalytic reactions [Eigen M (1971) Naturwissenschaften 58, 465-523], in which primordial life molecules are replicated with limited accuracy through autocatalytic reactions. For successful evolution, the information carrier (either RNA or DNA or their precursor) must be transmitted to the next generation with a minimal number of misprints. In Eigen's theory, the maximum chain length that could be maintained is restricted to 100-1000 nucleotides, while for the most primitive genome the length is around 7000-20,000. This is the famous error catastrophe paradox. How to solve this puzzle is an interesting and important problem in the theory of the origin of life. METHODOLOGY/PRINCIPAL FINDINGS: We use methods of statistical physics to solve this paradox by carefully analyzing the implications of neutral and lethal mutants, and truncated selection (i.e., when fitness is zero after a certain Hamming distance from the master sequence) for the critical chain length. While neutral mutants play an important role in evolution, they do not provide a solution to the paradox. We have found that lethal mutants and truncated selection together can solve the error catastrophe paradox. There is a principal difference between prebiotic molecule self-replication and proto-cell self-replication stages in the origin of life. CONCLUSIONS/SIGNIFICANCE: We have applied methods of statistical physics to make an important breakthrough in the molecular theory of the origin of life. Our results will inspire further studies on the molecular theory of the origin of life and biological evolution

    Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis

    Get PDF
    Phosphoenol pyruvate is the highest-energy phosphate found in living organisms and is one of the most versatile molecules in metabolism. Consequently, it is an essential intermediate in a wide variety of biochemical pathways, including carbon fixation, the shikimate pathway, substrate-level phosphorylation, gluconeogenesis and glycolysis. Triose glycolysis (generation of ATP from glyceraldehyde 3-phosphate via phosphoenol pyruvate) is among the most central and highly conserved pathways in metabolism. Here, we demonstrate the efficient and robust synthesis of phosphoenol pyruvate from prebiotic nucleotide precursors, glycolaldehyde and glyceraldehyde. Furthermore, phosphoenol pyruvate is derived within an α-phosphorylation controlled reaction network that gives access to glyceric acid 2-phosphate, glyceric acid 3-phosphate, phosphoserine and pyruvate. Our results demonstrate that the key components of a core metabolic pathway central to energy transduction and amino acid, sugar, nucleotide and lipid biosyntheses can be reconstituted in high yield under mild, prebiotically plausible conditions
    corecore