2,191 research outputs found
Recommended from our members
Inverse modeling of the global methyl chloride sources
Inverse modeling using the Bayesian least squares method is applied to better constrain the sources and sinks of atmospheric methyl chloride (CH3Cl) using observations from seven surface stations and eight aircraft field experiments. We use a three-dimensional global chemical transport model, the GEOS-Chem, as the forward model. Up to 39 parameters describing the continental/hemispheric and seasonal dependence of the major sources of CH3Cl are used in the inversion. We find that the available surface and aircraft observations cannot constrain all the parameters, resulting in relatively large uncertainties in the inversion results. By examining the degrees of freedom in the inversion Jacobian matrix, we choose a reduced set of parameters that can be constrained by the observations while providing valuable information on the sources and sinks. In particular, we resolve the seasonal dependence of the biogenic and biomass-burning sources for each hemisphere. The in situ aircraft measurements are found to provide better constraints on the emission sources than surface measurements. The a posteriori emissions result in better agreement with the observations, particularly at southern high latitudes. The a posteriori biogenic and biomass-burning sources decrease by 13 and 11% to 2500 and 545 Gg yr-1, respectively, while the a posteriori net ocean source increases by about a factor of 2 to 761 Gg yr-1. The decrease in biomass-burning emissions is largely due to the reduction in the emissions in seasons other than spring in the Northern Hemisphere. The inversion results indicate that the biogenic source has a clear winter minimum in both hemispheres, likely reflecting the decrease of biogenic activity during that season. Copyright 2006 by the American Geophysical Union
Galaxy alignment on large and small scales
Galaxies are not randomly distributed across the universe but showing
different kinds of alignment on different scales. On small scales satellite
galaxies have a tendency to distribute along the major axis of the central
galaxy, with dependence on galaxy properties that both red satellites and
centrals have stronger alignment than their blue counterparts. On large scales,
it is found that the major axes of Luminous Red Galaxies (LRGs) have
correlation up to 30Mpc/h. Using hydro-dynamical simulation with star
formation, we investigate the origin of galaxy alignment on different scales.
It is found that most red satellite galaxies stay in the inner region of dark
matter halo inside which the shape of central galaxy is well aligned with the
dark matter distribution. Red centrals have stronger alignment than blue ones
as they live in massive haloes and the central galaxy-halo alignment increases
with halo mass. On large scales, the alignment of LRGs is also from the
galaxy-halo shape correlation, but with some extent of mis-alignment. The
massive haloes have stronger alignment than haloes in filament which connect
massive haloes. This is contrary to the naive expectation that cosmic filament
is the cause of halo alignment.Comment: 4 pages, 3 figures, To appear in the proceedings of the IAU Symposium
308 "The Zeldovich Universe: Genesis and Growth of the Cosmic Web
Fundamental study of transpiration cooling
Isothermal and non-isothermal pressure drop data and heat transfer data generated on porous 304L stainless steel wire forms, sintered spherical stainless steel powder, and sintered spherical OFHC copper powder are reported and correlated. Pressure drop data was collected over a temperature range from 500 R to 2000 R and heat transfer data collected over a heat flux range from 5 to 15 BTU/in2/sec. It was found that flow data could be correlated independently of transpirant temperature and type (i.e., H2, N2). It was also found that no simple relation between heat transfer coefficient and specimen porosity was obtainable
Descreening of Field Effect in Electrically Gated Nanopores
This modeling work investigates the electrical modulation characteristics of
field-effect gated nanopores. Highly nonlinear current modulations are observed
in nanopores with non-overlapping electric double layers, including those with
pore diameters 100 times the Debye screening length. We attribute this extended
field-effect gating to a descreening effect, i.e. the counter-ions do not fully
relax to screen the gating potential due to the presence of strong ionic
transport
Measurement of teicoplanin by liquid chromatography-tandem mass spectrometry:development of a novel method
Teicoplanin is an antibiotic used for the treatment of endocarditis, osteomyelitis, septic arthritis and methicillin-resistant Staphylococcus aureus. Teicoplanin is emerging as a suitable alternative antibiotic to vancomycin, where their trough serum levels are monitored by immunoassay routinely. This is the first report detailing the development of a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for measuring teicoplanin in patients' serum
Types and correlates of school non-attendance in students with autism spectrum disorders
School non-attendance in autism spectrum disorders (ASD) has received very little attention to date. The study aimed to provide a comprehensive description of school non-attendance in students with ASD. Through an online survey, parents of 486 children (mean age 11 years) reported on school attendance over one month, and reasons for instances of non-attendance. On average, students missed five days of school of a possible 23 days. Persistent non-attendance (absent on 10%+ of available sessions) occurred among 43% of students. School non-attendance was associated with child older age, not living in a two-parent household, parental unemployment and, especially, attending a mainstream school. School refusal accounted for 43% of non-attendance. School exclusion and school withdrawal each accounted for 9% of absences. Truancy was almost non-existent. Non-problematic absenteeism (mostly related to medical appointments and illness) accounted for 32% of absences. Non-problematic absenteeism was more likely among those with intellectual disability, school refusal was more likely among older students, and school exclusion was more likely among students from single-parent, unemployed, and well educated households. Findings suggest school non-attendance in ASD is a significant issue, and that it is important to capture detail about attendance patterns and reasons for school non-attendance
Topological vortex formation in a Bose-Einstein condensate
Vortices were imprinted in a Bose-Einstein condensate using topological
phases. Sodium condensates held in a Ioffe-Pritchard magnetic trap were
transformed from a non-rotating state to one with quantized circulation by
adiabatically inverting the magnetic bias field along the trap axis. Using
surface wave spectroscopy, the axial angular momentum per particle of the
vortex states was found to be consistent with or , depending
on the hyperfine state of the condensate.Comment: 5 pages, 3 figure
CGM properties in VELA and NIHAO simulations; the OVI ionization mechanism: dependence on redshift, halo mass and radius
We study the components of cool and warm/hot gas in the circumgalactic medium
(CGM) of simulated galaxies and address the relative production of OVI by
photoionization versus collisional ionization, as a function of halo mass,
redshift, and distance from the galaxy halo center. This is done utilizing two
different suites of zoom-in hydro-cosmological simulations, VELA (6 halos;
) and NIHAO (18 halos; to ), which provide a broad theoretical basis
because they use different codes and physical recipes for star formation and
feedback. In all halos studied in this work, we find that collisional
ionization by thermal electrons dominates at high redshift, while
photoionization of cool or warm gas by the metagalactic radiation takes over
near . In halos of and above, collisions become
important again at , while photoionization remains significant down to
for less massive halos. In halos with , at most of the photoionized OVI is in a
warm, not cool, gas phase (~K). We also find that
collisions are dominant in the central regions of halos, while photoionization
is more significant at the outskirts, around , even in massive
halos. This too may be explained by the presence of warm gas or, in lower mass
halos, by cool gas inflows
Superconductivity at 2.3 K in the misfit compound (PbSe)1.16(TiSe2)2
The structural misfit compound (PbSe)1.16(TiSe2)2 is reported. It is a
superconductor with a Tc of 2.3 K. (PbSe)1.16(TiSe2)2 derives from a parent
compound, TiSe2, which shows a charge density wave transition and no
superconductivity. The crystal structure, characterized by high resolution
electron microscopy and powder x-ray diffraction, consists of two layers of
1T-TiSe2 alternating with a double layer of (100) PbSe. Transport measurements
suggest that the superconductivity is induced by charge transfer from the PbSe
layers to the TiSe2 layers.Comment: 17 pages, 4 figures. To be published in Physical Review
- …