1,404 research outputs found
Hierarchical Implicit Models and Likelihood-Free Variational Inference
Implicit probabilistic models are a flexible class of models defined by a
simulation process for data. They form the basis for theories which encompass
our understanding of the physical world. Despite this fundamental nature, the
use of implicit models remains limited due to challenges in specifying complex
latent structure in them, and in performing inferences in such models with
large data sets. In this paper, we first introduce hierarchical implicit models
(HIMs). HIMs combine the idea of implicit densities with hierarchical Bayesian
modeling, thereby defining models via simulators of data with rich hidden
structure. Next, we develop likelihood-free variational inference (LFVI), a
scalable variational inference algorithm for HIMs. Key to LFVI is specifying a
variational family that is also implicit. This matches the model's flexibility
and allows for accurate approximation of the posterior. We demonstrate diverse
applications: a large-scale physical simulator for predator-prey populations in
ecology; a Bayesian generative adversarial network for discrete data; and a
deep implicit model for text generation.Comment: Appears in Neural Information Processing Systems, 201
Automatic Differentiation Variational Inference
Probabilistic modeling is iterative. A scientist posits a simple model, fits
it to her data, refines it according to her analysis, and repeats. However,
fitting complex models to large data is a bottleneck in this process. Deriving
algorithms for new models can be both mathematically and computationally
challenging, which makes it difficult to efficiently cycle through the steps.
To this end, we develop automatic differentiation variational inference (ADVI).
Using our method, the scientist only provides a probabilistic model and a
dataset, nothing else. ADVI automatically derives an efficient variational
inference algorithm, freeing the scientist to refine and explore many models.
ADVI supports a broad class of models-no conjugacy assumptions are required. We
study ADVI across ten different models and apply it to a dataset with millions
of observations. ADVI is integrated into Stan, a probabilistic programming
system; it is available for immediate use
- …
