340 research outputs found

    Copper–antimony and copper–bismuth chalcogenides—Research opportunities and review for solar photovoltaics

    Get PDF
    The ternary Cu-Sb- and Cu-Bi-chalcogenides present a rich range of compounds of potential use for large-scale photovoltaics from Earth abundant elements. This paper reviews the state of fundamental knowledge about them, and their technological status with regard to solar cells. Research targets and missing data are highlighted, which may provide opportunities to help realize the goal of sustainable photovoltaics. The family of ternary Cu-Sb- and Cu-Bi-chalcogenides and their solid solutions present a rich selection of potential candidates for Earth-abundant low toxicity photovoltaic (PV) absorber materials. Moreover, they have some novel features imparted by the ns2 lone pair of electrons on the Sb and Bi ions. This review evaluates them as electronic materials, including experimental and theoretical evaluations of their phases, thermodynamic stability, point defects, conductivity, optical data, and PV performances. Formation of the materials in bulk, thin film, and nanoforms and the properties of the materials are critically assessed with relevance to their suitability for PV devices. There is special emphasis on CuSbS2 and CuSbSe2 which form the mainstay of the device literature and provide the most insights into the present-day limitation of the device efficiencies to 3 or 4%. Missing features of the literature are highlighted and clear statements recommending potential research pathways are made, which may help advance the technological performance from its present stuck position

    Electronic Properties of CdS/CdTe Solar Cells as Influenced by a Buffer Layer

    Get PDF
    We considered modification of the defect density of states in CdTe as influenced by a buffer layer in ZnO(ZnS, SnSe)/CdS/CdTe solar cells. Compared to the solar cells employing ZnO buffer layers, implementation of ZnSe and ZnS resulted in the lower net ionized acceptor concentration and the energy shift of the dominant deep trap levels to the midgap of CdTe. The results clearly indicated that the same defect was responsible for the inefficient doping and the formation of recombination centers in CdTe. This observation can be explained taking into account the effect of strain on the electronic properties of the grain boundary interface states in polycrystalline CdTe. In the conditions of strain, interaction of chlorine with the grain boundary point defects can be altered

    Admittance spectroscopy of CdTe/CdS solar cells subjected to varied nitric-phosphoric etching conditions

    Get PDF
    In this work we investigate the electric and structural properties of CdTe/CdS solar cells subjected to a nitric-phosphoric (NP) acid etching procedure, employed for the formation of a Te-rich layer before back contacting. The etching time is used as the only variable parameter in the study, while admittance spectroscopy is employed for the characterization of the cells' electric properties as well as for the analysis of the defect energy levels. Particular attention was also given to the characteristics of unetched devices and it is shown that despite the larger height of back-contact barrier such samples show well defined admittance spectra, as well as allow for extraction of as much as five defect levels in the range of 0.08-0.9 eV above the valence band. In contrast, admittance characteristics of the etched samples show a decrease of the number of the detectable trap levels with increasing etching time. (Hence it is usual for only one or two trap levels to be reported in the literature for finished devices.) The latter leads to the anomalous Arrhenius energy plots as well as the breakdown of low-frequency capacitance characteristics for samples etched with times larger than 30 s. The observed effects are attributed to physical thinning of the cells, the etching out of grain boundaries, and the tellurium enrichment of the CdTe surface by NP etching. We also perform analysis of the back-contact barrier height as extracted from dark I-V measurements at different temperatures. The dependence of this barrier height on NP etching time is compared with that of conversion efficiency, from which conclusions are drawn about both positive and negative effects of the nitric-phosphoric etch

    Maximizing the optical performance of planar CH3NH3PbI3 hybrid perovskite heterojunction stacks

    Get PDF
    A vapour-phase reaction process has been used to deposit smooth and uniform CH3NH3PbI3 perovskite material to enable the measurement of its optical dispersion relations, n and k, by ellipsometry. Fitting was achieved with a combination of Tauc-Lorenz, critical point parabolic band (CPPB) and harmonic oscillators. We have used the dispersion relations in an all-optical model of new planar device architectures in order to establish design rules for future materials choices to maximize the short-circuit current (Jsc) performance. For 500nm of MAPI with no window layer, the maximum performance expected from the model is Jsc=21.63mAcm-2. The ability of thin layers (in the range 20-60nm) of a range of window layer materials (TiO2, WO3, ZnO, Nb2O5, CdS, and Cd0.4 Zn0.6S) to enhance the short-circuit current of the devices was investigated. The performance of the oxides showed interference behaviour, with the first maxima in their J sc curves exceeding the value achievable without a window layer. However, after the first maximum, the performance generally fell off with increasing thickness. The only material to stay greater than the no-window condition for the entire investigated range is WO3. The highest performance (J sc of 22.47mAcm-2) was obtained with 59nm of WO3, with that of TiO2, ZnO, and Nb2O5 being marginally lower. Parasitic absorption in CdS window layers caused the J sc to decrease for all non-zero thicknesses - it gives no interference enhancement and its use cannot be recommended on optical grounds. Use of the wider gap alloy Cd0.4Zn0.6S gave higher currents than did CdS but its performance was not so high as for the oxides. Observations are made on the practicalities of fabricating the target structures in the fabrication of practical PV devices

    Identification of lead vacancy defects in lead halide perovskites

    Get PDF
    Perovskite photovoltaics advance rapidly, but questions remain regarding point defects: while experiments have detected the presence of electrically active defects no experimentally confirmed microscopic identifications have been reported. Here we identify lead monovacancy (VPb) defects in MAPbI3 (MA = CH3NH3+) using positron annihilation lifetime spectroscopy with the aid of density functional theory. Experiments on thin film and single crystal samples all exhibited dominant positron trapping to lead vacancy defects, and a minimum defect density of ~3 7 1015 cm−3 was determined. There was also evidence of trapping at the vacancy complex (VPbVI)− in a minority of samples, but no trapping to MA-ion vacancies was observed. Our experimental results support the predictions of other first-principles studies that deep level, hole trapping, VPb2−, point defects are one of the most stable defects in MAPbI3. This direct detection and identification of a deep level native defect in a halide perovskite, at technologically relevant concentrations, will enable further investigation of defect driven mechanisms
    • …
    corecore