145 research outputs found
Theoretical and experimental investigation of solid-state mechanisms for generating coherent radiation in the ultraviolet and X-ray regions Semiannual report, 1 May - 31 Oct. 1968
Solid state mechanism for generating coherent radiation in ultraviolet and X ray region
Theoretical and experimental investigation of solid-state mechanisms for generating coherent radiation in the ultraviolet and X-ray regions Final report, 1 Nov. 1968 - 30 Apr. 1969
Microwave impedance measurements for determining space charge waves in semiconductor
Stochastic evolution of four species in cyclic competition
We study the stochastic evolution of four species in cyclic competition in a
well mixed environment. In systems composed of a finite number of particles
these simple interaction rules result in a rich variety of extinction
scenarios, from single species domination to coexistence between
non-interacting species. Using exact results and numerical simulations we
discuss the temporal evolution of the system for different values of , for
different values of the reaction rates, as well as for different initial
conditions. As expected, the stochastic evolution is found to closely follow
the mean-field result for large , with notable deviations appearing in
proximity of extinction events. Different ways of characterizing and predicting
extinction events are discussed.Comment: 19 pages, 6 figures, submitted to J. Stat. Mec
Weakened magnetic braking as the origin of anomalously rapid rotation in old field stars
A knowledge of stellar ages is crucial for our understanding of many
astrophysical phenomena, and yet ages can be difficult to determine. As they
become older, stars lose mass and angular momentum, resulting in an observed
slowdown in surface rotation. The technique of 'gyrochronology' uses the
rotation period of a star to calculate its age. However, stars of known age
must be used for calibration, and, until recently, the approach was untested
for old stars (older than 1 gigayear, Gyr). Rotation periods are now known for
stars in an open cluster of intermediate age (NGC 6819; 2.5 Gyr old), and for
old field stars whose ages have been determined with asteroseismology. The data
for the cluster agree with previous period-age relations, but these relations
fail to describe the asteroseismic sample. Here we report stellar evolutionary
modelling, and confirm the presence of unexpectedly rapid rotation in stars
that are more evolved than the Sun. We demonstrate that models that incorporate
dramatically weakened magnetic braking for old stars can---unlike existing
models---reproduce both the asteroseismic and the cluster data. Our findings
might suggest a fundamental change in the nature of ageing stellar dynamos,
with the Sun being close to the critical transition to much weaker magnetized
winds. This weakened braking limits the diagnostic power of gyrochronology for
those stars that are more than halfway through their main-sequence lifetimes.Comment: 25 pages, 3 figures in main paper, 6 extended data figures, 1 table.
Published in Nature, January 2016. Please see https://youtu.be/O6HzYgP5uyc
for a video description of the resul
Coronal properties of the EQ Peg binary system
The activity indicators of M dwarfs are distinctly different for early and
late types. The coronae of early M dwarfs display high X-ray luminosities and
temperatures, a pronounced inverse FIP effect, and frequent flaring to the
extent that no quiescent level can be defined in many cases. For late M dwarfs,
fewer but more violent flares have been observed, and the quiescent X-ray
luminosity is much lower. To probe the relationship between coronal properties
with spectral type of active M dwarfs, we analyze the M3.5 and M4.5 components
of the EQ Peg binary system in comparison with other active M dwarfs of
spectral types M0.5 to M5.5. We investigate the timing behavior of both
components of the EQ Peg system, reconstruct their differential emission
measure, and investigate the coronal abundance ratios based on emission-measure
independent line ratios from their Chandra HETGS spectra. Finally we test for
density variations in different states of activity. The X-ray luminosity of EQ
Peg A (M3.5) is by a factor of 6-10 brighter than that of EQ Peg B (M4.5). Like
most other active M dwarfs, the EQ Peg system shows an inverse FIP effect. The
abundances of both components are consistent within the errors; however, there
seems to be a tendency toward the inverse FIP effect being less pronounced in
the less active EQ Peg B when comparing the quiescent state of the two stars.
This trend is supported by our comparison with other M dwarfs. As the X-ray
luminosity decreases with later spectral type, so do coronal temperatures and
flare rate. The amplitude of the observed abundance anomalies, i.e. the inverse
FIP effect, declines; however, clear deviations from solar abundances remain.Comment: 14 pages, accepted by A&
Dynamical model for spindown of solar-type stars
After their formation, stars slow down their rotation rates by the removal of angular momentum from their surfaces, e.g., via stellar winds. Explaining how this rotation of solar-type stars evolves in time is currently an interesting but difficult problem in astrophysics. Despite the complexity of the processes involved, a traditional model, where the removal of angular momentum by magnetic fields is prescribed, has provided a useful framework to understand observational relations between stellar rotation, age, and magnetic field strength. Here, for the first time, a spindown model is proposed where loss of angular momentum by magnetic fields evolves dynamically, instead of being prescibed kinematically. To this end, we evolve the stellar rotation and magnetic field simultaneously over stellar evolution time by extending our previous work on a dynamo model which incorporates nonlinear feedback mechanisms on rotation and magnetic fields. We show that our extended model reproduces key observations and is capable of explaining the presence of the two branches of (fast and slow rotating) stars which have different relations between rotation rate Ω versus time (age), magnetic field strength versus rotation rate, and frequency of magnetic field versus rotation rate. For fast rotating stars we find that: (i) there is an exponential spindown , with t measured in Gyr; (ii) magnetic activity saturates for higher rotation rate; (iii) . For slow rotating stars we find: (i) a power-law spindown ; (ii) that magnetic activity scales roughly linearly with rotation rate; (iii) . The results obtained from our investigations are in good agreement with observations. The Vaughan–Preston gap is consistently explained in our model by the shortest spindown timescale in this transition from fast to slow rotators. Our results highlight the importance of self-regulation of magnetic fields and rotation by direct and indirect interactions involving nonlinear feedback in stellar evolution
Cyclic competition of four species: domains and interfaces
We study numerically domain growth and interface fluctuations in one- and
two-dimensional lattice systems composed of four species that interact in a
cyclic way. Particle mobility is implemented through exchanges of particles
located on neighboring lattice sites. For the chain we find that domain growth
strongly depends on the mobility, with a higher mobility yielding a larger
domain growth exponent. In two space dimensions, when also exchanges between
mutually neutral particles are possible, both domain growth and interface
fluctuations display universal regimes that are independent of the predation
and exchange rates.Comment: 14 pages, 7 figures, version accepted for publication in J. Stat.
Mec
ARGOS: the laser guide star system for the LBT
ARGOS is the Laser Guide Star adaptive optics system for the Large Binocular Telescope. Aiming for a wide field adaptive optics correction, ARGOS will equip both sides of LBT with a multi laser beacon system and corresponding wavefront sensors, driving LBT's adaptive secondary mirrors. Utilizing high power pulsed green lasers the artificial beacons are generated via Rayleigh scattering in earth's atmosphere. ARGOS will project a set of three guide stars above each of LBT's mirrors in a wide constellation. The returning scattered light, sensitive particular to the turbulence close to ground, is detected in a gated wavefront sensor system. Measuring and correcting the ground layers of the optical distortions enables ARGOS to achieve a correction over a very wide field of view. Taking advantage of this wide field correction, the science that can be done with the multi object spectrographs LUCIFER will be boosted by higher spatial resolution and strongly enhanced flux for spectroscopy. Apart from the wide field correction ARGOS delivers in its ground layer mode, we foresee a diffraction limited operation with a hybrid Sodium laser Rayleigh beacon combination.12 page(s
- …