531 research outputs found

    Role of long non-coding RNAs in adipose tissue metabolism and associated pathologies

    Full text link
    The incidence of obesity and its related disorders has increased dramatically in recent years and has become a pandemic. Adipose tissue is a crucial regulator of these diseases due to its endocrine capacity. Thus, understanding adipose tissue metabolism is essential to finding new effective therapeutic approaches. The 'omic' revolution has identified new concepts about the complexity of the signaling pathways involved in the pathophysiology of adipose tissue-associated disorders. Specifically, advances in transcriptomics have allowed its application in clinical practice and primary or secondary prevention. Long non-coding RNAs (lncRNAs) have emerged as critical regulators of adipose tissue since they can modulate gene expression at the epigenetic, transcriptional, and post-transcriptional levels. They interact with DNA, RNA, protein complexes, other non-coding RNAs, and microRNAs to regulate a wide range of physiological and pathological processes. Here, we review the emerging field of lncRNAs, including how they regulate adipose tissue biology, and discuss circulating lncRNAs, which may represent a turning point in the diagnosis and treatment of adipose tissue-associated disorders. We also highlight potential biomarkers of obesity and diabetes that could be considered as therapeutic targets. Keywords: Adipose tissue; Biomarkers; Diabetes; Obesity; Therapeutics; lncRNA

    Роль совершенствования бухгалтерского учета в управлении производственными запасами

    Get PDF
    Целью проведения исследования является обоснование направлений повышения эффективности использования материальных производственных запасов на предприятии в условиях рыночной экономики

    Identification of a Novel Modulator of Thyroid Hormone Receptor-Mediated Action

    Get PDF
    Diabetes is characterized by reduced thyroid function and altered myogenesis after muscle injury. Here we identify a novel component of thyroid hormone action that is repressed in diabetic rat muscle. Methodology/Principal Findings. We have identified a gene, named DOR, abundantly expressed in insulin-sensitive tissues such as skeletal muscle and heart, whose expression is highly repressed in muscle from obese diabetic rats. DOR expression is up-regulated during muscle differentiation and its loss-of-function has a negative impact on gene expression programmes linked to myogenesis or driven by thyroid hormones. In agreement with this, DOR enhances the transcriptional activity of the thyroid hormone receptor TRa1. This function is driven by the N-terminal part of the protein. Moreover, DOR physically interacts with TR a1 and to T3-responsive promoters, as shown by ChIP assays. T3 stimulation also promotes the mobilization of DOR from its localization in nuclear PML bodies, thereby indicating that its nuclear localization and cellular function may be related. Conclusions/Significance. Our data indicate that DOR modulates thyroid hormone function and controls myogenesis. DOR expression is down-regulated in skeletal muscle in diabetes. This finding may be of relevance for the alterations in muscle function associated with this disease

    Identification of a novel modulator of thyroid hormone receptor-mediated action

    Get PDF
    Diabetes is characterized by reduced thyroid function and altered myogenesis after muscle injury. Here we identify a novel component of thyroid hormone action that is repressed in diabetic rat muscle. Methodology/Principal Findings. We have identified a gene, named DOR, abundantly expressed in insulin-sensitive tissues such as skeletal muscle and heart, whose expression is highly repressed in muscle from obese diabetic rats. DOR expression is up-regulated during muscle differentiation and its loss-of-function has a negative impact on gene expression programmes linked to myogenesis or driven by thyroid hormones. In agreement with this, DOR enhances the transcriptional activity of the thyroid hormone receptor TRa1. This function is driven by the N-terminal part of the protein. Moreover, DOR physically interacts with TR a1 and to T3-responsive promoters, as shown by ChIP assays. T3 stimulation also promotes the mobilization of DOR from its localization in nuclear PML bodies, thereby indicating that its nuclear localization and cellular function may be related. Conclusions/Significance. Our data indicate that DOR modulates thyroid hormone function and controls myogenesis. DOR expression is down-regulated in skeletal muscle in diabetes. This finding may be of relevance for the alterations in muscle function associated with this disease

    The prevalence of bronchiectasis in patients with alpha-1 antitrypsin deficiency: initial report of EARCO

    Full text link
    Background: Although bronchiectasis has been recognised as a feature of some patients with Alpha1-Antitrypsin deficiency the prevalence and characteristics are not widely known. We wished to determine the prevalence of bronchiectasis and patient characteristics. The first cohort of patients recruited to the EARCO (European Alpha1 Research Collaboration) International Registry data base by the end of 2021 was analysed for radiological evidence of both emphysema and bronchiectasis as well as baseline demographic features. Results: Of the first 505 patients with the PiZZ genotype entered into the data base 418 (82.8%) had a reported CT scan. There were 77 (18.4%) with a normal scan and 38 (9.1%) with bronchiectasis alone. These 2 groups were predominantly female never smokers and had lung function in the normal range. The remaining 303 (72.5%) ZZ patients all had emphysema on the scan and 113 (27%) had additional evidence of bronchiectasis. Conclusions: The data indicates the bronchiectasis alone is a feature of 9.1% of patients with the PiZZ genotype of Alpha1-antitrypsin deficiency but although emphysema is the dominant lung pathology bronchiectasis is also present in 27% of emphysema cases and may require a different treatment strategy

    Adaptación a los nuevos Grados de las metodologías docentes empleadas en una asignatura de Estadística Económico-Empresarial

    Get PDF
    Durante el presente curso 2009/2010 la Universidad Pablo de Olavide (UPO), de Sevilla, ha puesto en marcha el nuevo mapa de titulaciones adaptado al Espacio Europeo de Educación Superior (EEES), el cual está compuesto por 16 grados y 6 dobles grados. Hasta llegar a este punto la UPO trabajó duro durante más de 6 años en la adaptación de su docencia al nuevo marco establecido por dicho EEES. Con tal objetivo, se puso en marcha en la Facultad de Empresariales, entre otras, una Experiencia Piloto de implantación del sistema de créditos europeos pretendiendo, fundamentalmente, renovar la metodología docente, incrementar la calidad de la docencia y de hacerla más cercana al alumno, siempre atendiendo a los planes de estudio actualmente vigentes. En el presente trabajo mostramos la adaptación que se realizó en la asignatura de Estadística e Introducción a la Econometría de la extinta Licenciatura en Administración y Dirección de Empresas en el marco de la Experiencia Piloto y los cambios que se acometieron posteriormente para su implantación en el nuevo Grado en Administración y Dirección de Empresas bajo el nombre: Estadística Empresarial I. Haremos hincapié en aquellos aspectos más destacados relativos al nuevo sistema de evaluación basado en evaluación continua.Artículo revisado por pare

    Soil contamination in nearby natural areas mirrors that in urban greenspaces worldwide

    Full text link
    Soil contamination is one of the main threats to ecosystem health and sustainability. Yet little is known about the extent to which soil contaminants differ between urban greenspaces and natural ecosystems. Here we show that urban greenspaces and adjacent natural areas (i.e., natural/semi-natural ecosystems) shared similar levels of multiple soil contaminants (metal(loid)s, pesticides, microplastics, and antibiotic resistance genes) across the globe. We reveal that human influence explained many forms of soil contamination worldwide. Socio-economic factors were integral to explaining the occurrence of soil contaminants worldwide. We further show that increased levels of multiple soil contaminants were linked with changes in microbial traits including genes associated with environmental stress resistance, nutrient cycling, and pathogenesis. Taken together, our work demonstrates that human-driven soil contamination in nearby natural areas mirrors that in urban greenspaces globally, and highlights that soil contaminants have the potential to cause dire consequences for ecosystem sustainability and human wellbeing

    Metabolic shift underlies recovery in reversible infantile respiratory chain deficiency.

    Get PDF
    Reversible infantile respiratory chain deficiency (RIRCD) is a rare mitochondrial myopathy leading to severe metabolic disturbances in infants, which recover spontaneously after 6-months of age. RIRCD is associated with the homoplasmic m.14674T>C mitochondrial DNA mutation; however, only ~ 1/100 carriers develop the disease. We studied 27 affected and 15 unaffected individuals from 19 families and found additional heterozygous mutations in nuclear genes interacting with mt-tRNAGlu including EARS2 and TRMU in the majority of affected individuals, but not in healthy carriers of m.14674T>C, supporting a digenic inheritance. Our transcriptomic and proteomic analysis of patient muscle suggests a stepwise mechanism where first, the integrated stress response associated with increased FGF21 and GDF15 expression enhances the metabolism modulated by serine biosynthesis, one carbon metabolism, TCA lipid oxidation and amino acid availability, while in the second step mTOR activation leads to increased mitochondrial biogenesis. Our data suggest that the spontaneous recovery in infants with digenic mutations may be modulated by the above described changes. Similar mechanisms may explain the variable penetrance and tissue specificity of other mtDNA mutations and highlight the potential role of amino acids in improving mitochondrial disease

    Computational tools for splicing defect prediction in breast/ovarian cancer genes: how efficient are they at predicting RNA alterations?

    Get PDF
    In silico tools for splicing defect prediction have a key role to assess the impact of variants of uncertain significance. Our aim was to evaluate the performance of a set of commonly used splicing in silico tools comparing the predictions against RNA in vitro results. This was done for natural splice sites of clinically relevant genes in hereditary breast/ovarian cancer (HBOC) and Lynch syndrome. A study divided into two stages was used to evaluate SSF-like, MaxEntScan, NNSplice, HSF, SPANR, and dbscSNV tools. A discovery dataset of 99 variants with unequivocal results of RNA in vitro studies, located in the 10 exonic and 20 intronic nucleotides adjacent to exon-intron boundaries of BRCA1, BRCA2, MLH1, MSH2, MSH6, PMS2, ATM, BRIP1, CDH1, PALB2, PTEN, RAD51D, STK11, and TP53, was collected from four Spanish cancer genetic laboratories. The best stand-alone predictors or combinations were validated with a set of 346 variants in the same genes with clear splicing outcomes reported in the literature. Sensitivity, specificity, accuracy, negative predictive value (NPV) and Mathews Coefficient Correlation (MCC) scores were used to measure the performance. The discovery stage showed that HSF and SSF-like were the most accurate for variants at the donor and acceptor region, respectively. The further combination analysis revealed that HSF, HSF+SSF-like or HSF+SSF-like+MES achieved a high performance for predicting the disruption of donor sites, and SSF-like or a sequential combination of MES and SSF-like for predicting disruption of acceptor sites. The performance confirmation of these last results with the validation dataset, indicated that the highest sensitivity, accuracy, and NPV (99.44%, 99.44%, and 96.88, respectively) were attained with HSF+SSF-like or HSF+SSF-like+MES for donor sites and SSF-like (92.63%, 92.65%, and 84.44, respectively) for acceptor sites. We provide recommendations for combining algorithms to conduct in silico splicing analysis that achieved a high performance. The high NPV obtained allows to select the variants in which the study by in vitro RNA analysis is mandatory against those with a negligible probability of being spliceogenic. Our study also shows that the performance of each specific predictor varies depending on whether the natural splicing sites are donors or acceptors
    corecore